Stepwise Upconversion and Cooperative Phenomena in Fluorescent Systems

  • R. K. Watts
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 8)


The general discussion of the preceding chapter of energy transfer in the regime of high sensitizer concentration is applied to several cases of stepwise, sequential transfer between rare earth ions, a process which leads to conversion of infrared sensitizer excitation to visible or ultraviolet activator luminescence. The process is compared with the generally less efficient cooperative excitation process in which two sensitizers transfer simultaneously their excitation to an activator. Both types of process are adequately described by rate equations for the populations of the relevant energy levels of the ions. Another class of photon-assisted two-ion processes is briefly discussed on the basis of Dexter’s theory.


Luminescence Intensity Green Luminescence Cooperative Phenomenon Sequential Transfer Weak Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Auzel, Comt. Rend. Acad. Sci. Paris 262, 1016 (1966).Google Scholar
  2. 2.
    F. Auzel, Proc. IEEE 61, 758 (1973).CrossRefGoogle Scholar
  3. 3.
    R. K. Watts, J. Chem. Phys. 53, 3552 (1970);ADSCrossRefGoogle Scholar
  4. 3a.
    R. K. Watts and H. J. Richter, Phys. Rev. B6, 1584 (1972).ADSGoogle Scholar
  5. 4.
    V. V. Ovsyankin and P. P. Feofilov, Opt. and Spectr. 31, 510 (1971).Google Scholar
  6. 5.
    L. F. Johnson, H. J. Guggenheim, T. C. Rich, and F. W. Ostermayer, Jr., J. Appl. Phys. 43, 1125 (1972).ADSCrossRefGoogle Scholar
  7. 6.
    F. W. Ostermayer, Jr., J. P. van der Ziel, H. M. Marcos, and J. E. Geusic, Phys. Rev. B3, 2698 (1971).ADSGoogle Scholar
  8. 7.
    R. A. Hewes and J. F. Sarver, Phys. Rev. 182, 427 (1969).ADSCrossRefGoogle Scholar
  9. 8.
    J. D. Kingsley, J. Appl. Phys. 41, 175 (1970).ADSCrossRefGoogle Scholar
  10. 9.
    J. F. Porter, Jr. and H. W. Moos, Phys. Rev. 152, 300 (1966).ADSCrossRefGoogle Scholar
  11. 10.
    J. P. van der Ziel, F. W. Ostermayer, Jr., and L. G. Van Uitert, Phys. Rev. B2, 4432 (1970).ADSGoogle Scholar
  12. 11.
    J. P. Wittke, I. Ladany, and P. N. Yocom, J. Appl. Phys. 43, 595 (1972).ADSCrossRefGoogle Scholar
  13. 12.
    H. Kuroda, S. Shionoya, and T. Kushida, J. Phys. Soc. Japan 33, 125 (1972).ADSCrossRefGoogle Scholar
  14. 13.
    T. C. Rich and D. A. Pinnow, J. Appl. Phys. 43, 2357 (1972).ADSCrossRefGoogle Scholar
  15. 14.
    F. W. Ostermayer, Jr. and L. G. Van Uitert, Phys. Rev. B1, 4208 (1970).ADSGoogle Scholar
  16. 15.
    T. Kushida, J. Phys. Soc. Japan 34, 1327 (1973).ADSCrossRefGoogle Scholar
  17. 16.
    D. L. Dexter, Phys. Rev. 126, 1962 (1962);ADSCrossRefGoogle Scholar
  18. 16a.
    M. Altarelli and D. L. Dexter, Phys. Rev. B7, 5335 (1973).ADSGoogle Scholar
  19. 17.
    P. P. Feofilov and A. K. Trofimov, Opt. and Spectr. 27, 291 (1969).ADSGoogle Scholar
  20. 18.
    J. P. van der Ziel and L. G. Van Uitert, Phys. Rev. 180, 343 (1969);ADSCrossRefGoogle Scholar
  21. 18a.
    J. P. van der Ziel and L. G. Van Uitert, Phys. Rev. B8, 1889 (1973).ADSGoogle Scholar
  22. 19.
    V. I. Bilak, G. M. Zverev, G. O. Karapetyan, and A. M. Onishchenko, JETP Letters 14, 199 (1971).ADSGoogle Scholar
  23. 20.
    F. Varsanyi and G. H. Dieke, Phys. Rev. Letters 7, 442 (1961).ADSCrossRefGoogle Scholar
  24. 21.
    G. G. P. van Gorkom, Phys. Rev. B8, 1827 (1973).ADSGoogle Scholar
  25. 22.
    E. Nakazawa and S. Shionoya, Phys. Rev. Letters 25, 1710 (1970).ADSCrossRefGoogle Scholar
  26. 23.
    K. Shinagawa, J. Phys. Soc. Japan 23, 1057 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. K. Watts
    • 1
  1. 1.Texas Instruments Inc.DallasUSA

Personalised recommendations