Advertisement

Energy Transfer Phenomena

  • R. K. Watts
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 8)

Abstract

The transfer of optical excitation energy between weakly coupled ions in solids is discussed. The most important coupling mechanisms are treated first from a microscopic point of view, and then statistical averages are taken over the volume of the sample to calculate observable quantities such as the yield of sensitizer luminescence and the time development of the sensitizer luminescence following pulse excitation. Three regimes are considered: negligible sensitizer → sensitizer transfer, transfer between sensitizers comparable in probability with sensitizer → activator transfer, and migration of excitation among sensitizers much more rapid than transfer to activators. The discussion is largely applied to rare earth ions.

Keywords

Energy Transfer Tensor Operator Quadrupole Transition Homogeneous Width Spontaneous Decay Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Kisliuk, N. C. Chang, P. L. Scott, and M. H. L. Pryce, Phys. Rev. 184, 367 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    G. A. Prinz, Phys. Rev. 152, 474 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    T. Förster, Ann. Physik 2, 55 (1948).MATHCrossRefGoogle Scholar
  4. 4.
    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).ADSCrossRefGoogle Scholar
  5. 5.
    T. Förster in Modem Quantum Chemistry, Part III, ed. by O. Sinanoglu (Academic Press, N. Y., 1965), ch. B. 1.Google Scholar
  6. 6.
    B. C. Carlson and G. S. Rushbrooke, Proc. Camb. Phil. Soc. 46, 626 (1950).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    R. J. Birgeneau, M. T. Hutchings, J. M. Baker, and J. D. Riley, J. Appl. Phys. 40, 1070 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    T. Kushida, J. Phys. Soc. Japan 34, 1318 (1973).CrossRefGoogle Scholar
  9. 9.
    K. Shinagawa, J. Phys. Soc. Japan 23, 1057 (1967).CrossRefGoogle Scholar
  10. 10.
    C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the p n , d n and f n Configurations (M.I.T. Press, Cambridge, Mass., 1963).Google Scholar
  11. 11.
    G. H. Dieke, Spectra and Energy levels of Rare Earth Ions in Crystals (Wiley Interscience, N. Y., 1968).Google Scholar
  12. 12.
    A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962).ADSCrossRefGoogle Scholar
  13. 13.
    M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3j and 6j Symbols (Technology Press, Cambridge, Mass., 1959).Google Scholar
  14. 14.
    M. J. Weber, Phys. Rev. 157, 262 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    P. M. Levy, Phys. Rev. 177, 509 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    R. J. Birgeneau, J. Chem. Phys. 50, 4282 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    N. L. Huang, Phys. Rev. B1, 945 (1970).ADSGoogle Scholar
  18. 18.
    J. P. van der Ziel, Phys. Rev. B4, 2888 (1971).ADSGoogle Scholar
  19. 19.
    R. L. Orbach in Optical Properties of Ions in Crystals, ed. by H. M. Crosswhite and H. W. Moos (Wiley Interscience, N. Y., 1967) p. 445.Google Scholar
  20. 20.
    T. Miyakawa and D. L. Dexter, Phys. Rev. B1, 2961 (1970).ADSGoogle Scholar
  21. 21.
    L. A. Riseberg and H. W. Moos, Phys. Rev. 174, 429 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    N. Yamada, S. Shionoya, and T. Kushida, J. Phys. Soc. Japan 32, 1577 (1972).ADSCrossRefGoogle Scholar
  23. 23.
    T. Förster, Z. Naturforsch. 4A, 321 (1949).ADSGoogle Scholar
  24. 24.
    R. E. Kellogg, J. Luminescence 1, 435 (1970).ADSCrossRefGoogle Scholar
  25. 25.
    E. Nakazawa and S. Shionoya, J. Chem. Phys. 47, 3211 (1967).ADSCrossRefGoogle Scholar
  26. 26.
    M. Inokuti and H. Hirayama, J. Chem. Phys. 43, 1978 (1965).ADSCrossRefGoogle Scholar
  27. 27.
    M. Yokota and O. Tanimoto, J. Phys. Soc. Japan 22, 779 (1967).ADSCrossRefGoogle Scholar
  28. 28.
    A. I. Burshtein, Sov. Phys. JETP 35, 882 (1972).ADSGoogle Scholar
  29. 29.
    M. Trlifaj, Czech. J. Phys. 8, 510 (1958).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    M. J. Weber, Phys. Rev. B4, 2932 (1971).ADSGoogle Scholar
  31. 31.
    J. P. van der Ziel, L. Kopf, and L. G. Van Uitert, Phys. Rev. B6, 615 (1972).ADSGoogle Scholar
  32. 32.
    R. K. Watts and H. J. Richter, Phys. Rev. B6, 1584 (1972).ADSGoogle Scholar
  33. 33.
    N. Krasutsky and H. W. Moos, Phys. Rev. B8, 1010 (1973).ADSGoogle Scholar
  34. 34.
    W. B. Gandrud and H. W. Moos, J. Chem. Phys. 49, 2170 (1968).ADSCrossRefGoogle Scholar
  35. 35.
    For an alternate derivation of the rate equation see W. J. C. Grant, Phys. Rev. B4, 648 (1971).ADSGoogle Scholar
  36. 35a.
    See also F. K. Fong and D. J. Diestler, J. Chem. Phys. 56, 2875 (1972).ADSCrossRefGoogle Scholar
  37. 36.
    G. F. Imbusch, Phys. Rev. 153, 326 (1967).ADSCrossRefGoogle Scholar
  38. 37.
    J. M. Flaherty and B. Di Bartolo, Phys. Rev. B8, 5232 (1973).ADSGoogle Scholar
  39. 38.
    T. P. J. Botden and F. A. Kröger, Physica 14, 553 (1948).ADSCrossRefGoogle Scholar
  40. 39.
    F. Williams, Phys. Stat. Sol. 25, 493 (1968).ADSCrossRefGoogle Scholar
  41. 40.
    K. Colbow, Phys. Rev. 139A, 274 (1965).ADSCrossRefGoogle Scholar
  42. 41.
    M. Kleinerman, J. Luminescence 1, 481 (1970).ADSCrossRefGoogle Scholar
  43. 42.
    R. K. Watts and W. C. Holton, J. Appl. Phys. 45, 873 (1974).ADSCrossRefGoogle Scholar
  44. 43.
    V. R. Belan, C. M. Briskina, V. V. Grigoryants, and M. E. Zhabotinskii, Sov. Phys. JETP 30, 627 (1970).ADSGoogle Scholar
  45. 44.
    L. A. Riseberg, Phys. Rev. A7, 671 (1973).ADSGoogle Scholar
  46. 45.
    S. K. Lyo, Phys. Rev. B3, 3331 (1971).ADSGoogle Scholar
  47. 46.
    N. Motegi and S. Shionoya, J. Luminescence 8, 1 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. K. Watts
    • 1
  1. 1.Texas Instruments Inc.DallasUSA

Personalised recommendations