Advertisement

Transmission of Electrical Energy by Superconducting Cables

  • G. Bogner
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 1)

Abstract

The growth of the world’s population, the general rise in the standard of living and the gap to be closed in this respect by the developing countries lead to a constant increase in the demand for power. Figure 1 shows the expected trend of the world’s power demand up to the year 2000 [1]. The present consumption of about 7.5 billion tons of hard-coal units (HCU) [1 t HCU = 8,120 kWh] will then have risen three-fold, i.e. to 22 billion tons HCU. While nuclear energy today represents a minute fraction compared with the other primary sources of energy such as coal, petroleum and natural gas, Fig. 1 shows an expected increase to about 35% at the turn of the century.

Keywords

Breakdown Strength Dielectric Strength Fault Current Overhead Line Outer Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Buch, Krausskopf-Verlag GmbH, Mainz, (1973).Google Scholar
  2. 2.
    A. Hofmann, ETZ A92, 663 (1971).Google Scholar
  3. 3.
    G. Bogner, Fachausschuss #x0022;Low Temperatures#x0022; Deutsche Physik. Gesell., Münster, 19, Mar. 24, 1973.Google Scholar
  4. 4.
    E. Weghaupt, Part 1: Techn. Rundschau 20, 33 (1972); Part 2: Techn. Rundschau 24, 43 (1972).Google Scholar
  5. 5.
    D.P. Gregory, Sci. Am. 228, 13 (1973).CrossRefGoogle Scholar
  6. 6.
    Underground Power Transmission Report to the Federal Power Commission by the Commisions* Advisory Committee on Underground Transmission, April 1966, by Arthur D. Little.Google Scholar
  7. 7.
    G.G. Sauve and R.H.P. Thom, Electrical World, Sept. 1, 44 (1972).Google Scholar
  8. 8.
    A. Hofmann, ETZ A 91, 65 (1970).Google Scholar
  9. 9.
    Industrie Elektrik und Elektronik 18, No. 4, 86 (1973).Google Scholar
  10. 10.
    M. Erche, Energietechnik 99, (1971).Google Scholar
  11. 11.
    #x0022;Underground Power Transmission#x0022;, a study of the Electric Research Council by Arthur D. Little, Inc. October 1971.Google Scholar
  12. 12.
    E.F. Pescke, Siemens Forschungs und Entwickl. Ber. 2, 46 (1973).Google Scholar
  13. 13.
    F. Winkler, ETZ A 92, 131 (1971).Google Scholar
  14. 14.
    J.D. Endacott, et al., Postgraduate course on high voltage power engineering, University of Manchester, 1969.Google Scholar
  15. 15.
    H.W. Graybill and J.A. Williams, IEEE Trans. PAS 89, 17 (1970).Google Scholar
  16. 16.
    P. Brückner, ETZ A 92, 733 (1971).Google Scholar
  17. 17.
    Report to Conférence Internationale des Grands Réseaux Electriques á Haute Tension (CIGRE) Stud. Com. 21, No. 11 (1971).Google Scholar
  18. 18.
    R. Jocteur and M. Osty, CIGRE Report Stud. Comm. 21, No. 7 Part I (1972).Google Scholar
  19. 19.
    H. Gähler: Private communication, Siemens-Kabelwerk, Berlin.Google Scholar
  20. 20.
    A. V. Weiss, Energie-Übertragung; ETZ A 88, 521 (1967).Google Scholar
  21. 21.
    H. Paul, Int. Elek. Rundschau, 24, 87 (1970); H. Paul, Electronics and Power 16, 87 (1970).Google Scholar
  22. 22.
    H. Meinke andK. Range, Nachrichtentechn. Z. 16, 161 (1964).Google Scholar
  23. 23.
    A.V. Pastukov and F.E. Ruccia, Conference on low temperatures and electric power,London, March 24, 1969.Google Scholar
  24. 24.
    S.H. Minnichand, G.R. Fox, IEEE Winter Power Meeting, 1970.Google Scholar
  25. 25.
    H. Nagano, M. Fukasawa, S. Kumaand, K. Sugiyama, Cryogenics 13, 219 (1973).CrossRefGoogle Scholar
  26. 26.
    K. Hosokawa, Report to CIGRE Study Committee 21, No. 6 (1972).Google Scholar
  27. 27.
    P. Graneau, Cryogenic Eng. News 4, 19 (1969).Google Scholar
  28. 28.
    B.C. Belanger and M.F. Jefferies, Cryogenics and Ind. Gases, 7, 17, (1972).Google Scholar
  29. 29.
    M.J. Jefferies, S.M. Minnich and B.C. Belanger, IEEE Underground Transmission Conference, Pittsburgh, May 22, 1972, p. 77.Google Scholar
  30. 30.
    R. Mcfee, Power Engr. 65, 80 (1961).Google Scholar
  31. 31.
    R. Mcfee, Elec. Engr. 81, 122 (1962).Google Scholar
  32. 32.
    P. Grassmann, Techn. Rundschau 54, 9 (1962).Google Scholar
  33. 33.
    Go Bogner and W. Heinzel, Solid State Elee. 7, 93 (1964).CrossRefGoogle Scholar
  34. 34.
    G. Bogner and W. Heinzel, Spring Meeting of the Institute of Metals in London, March 18, 1964.Google Scholar
  35. 35.
    W. Kafka, US Patent No. 3,292,016.Google Scholar
  36. 36.
    P.A. Klaudy, Advances in Cryogenic Engr., IT, New York (Plenum Press), 1966, p. 684, K.D. Timmerhaus (Ed.).Google Scholar
  37. 37.
    E. Bochenek et al. CIGRE Study Committee 31, Melbourne, March 1973.Google Scholar
  38. 38.
    P. Dubois et al., IEEE Pub. No. 72 CHO 682–5-TABSC, 1972, p.173.Google Scholar
  39. 39.
    G. Bogner and F. Schmidt, ETZ A 92, 740 (1971).Google Scholar
  40. 40.
    C.N. Carter, Cryogenics 13, 207 (1973).CrossRefGoogle Scholar
  41. 41.
    Ho Engelhard and E. Bochenek, Colloquium in Heidelberg, Oct. 21, 1971.Google Scholar
  42. 42.
    T. Horigome, N. Ito, S. Ihara and S. Sekine, CIGRE Study Committee 31 (1972), London, August 1972.Google Scholar
  43. 43.
    E.B. Forsyth, Brookhaven National Laboratory, March 1972, Contr. No. AT(30–1)-16 United States Atomic Energy Commission.Google Scholar
  44. 44.
    J. Nicol, A Study for the Electric Research Council by Arthur D. Little Inc., Case No. 73411, October 1971.Google Scholar
  45. 45.
    E. Scheffler, International Symposium Hochspannungstechnik, München 1972, p.579.Google Scholar
  46. 46.
    E.C. Rogers and D.R. Edwards, Electr. Rev. 181, 348 (1967).Google Scholar
  47. 47.
    W. Kafka, Elek. Zeit.A 90, 89 (1969).Google Scholar
  48. 48.
    R.W. Meyerhoff, Cryogenics 11, 91 (1971).CrossRefGoogle Scholar
  49. 49.
    P.A. Klaudy, ETZ A89, 325 (1968).Google Scholar
  50. 50.
    R.L. Garwinand J. Matisoo, Proc. IEEE 55,538 (1967).CrossRefGoogle Scholar
  51. 51.
    G.L. Guthrie, J. Appi. Phys. 42, 5719 (1971).CrossRefGoogle Scholar
  52. 52.
    W.F. Gauster, D.C. Freeman and H.M. Long, Paper 56 HE (USA), World Power Conference (1964), p. 1954.Google Scholar
  53. 53.
    P.A. Klaudy, Titisee (1972), p. U1-U74.Google Scholar
  54. 54.
    D.R. Edwards, R.J. Slaughter, Electrical Times 3, 166 (1967).Google Scholar
  55. 55.
    E.F. Hammel,Los Alamos Scientific Laboratory,LASL (1972), p.94 proposal for dc sc power transmission lines.Google Scholar
  56. 56.
    P. Klaudy, Elektrotechn. und Maschinenbau 89, 93 (1971).Google Scholar
  57. 57.
    Y.B. Kim, C.F. Hempstead and A.R. Strnad, Phys. Rev. Letters 9, 306 (1962).CrossRefGoogle Scholar
  58. 58.
    R. Hampshire, J. Sutton and M.T. Taylor, Conference on Low Temperatures and Electric Power, London 1969, p.69.Google Scholar
  59. 59.
    P.R. Aron, and G.W. Ahlgren, Adv. in Cryogenic Engr. 13, 21 (1967).Google Scholar
  60. 60.
    H.A. Ullmaier, Phys. Stato Sol. 17, 631 (1966).CrossRefGoogle Scholar
  61. 61.
    W.J. Dunn and P. Hlawiczka, Brit. J. Appi. Phys. Ser. 2, 1, 1469 (1968).Google Scholar
  62. 62.
    T.A. Buchhold, Cryogenics 3, 141 (1963).CrossRefGoogle Scholar
  63. 63.
    H. London, Phys. Letters 6, 162 (1963).CrossRefGoogle Scholar
  64. 64.
    C.P. Bean, Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
  65. 65.
    C.P. Bean and J.D. Livingston, Phys. Rev. Letters 12, 14 (1964).CrossRefGoogle Scholar
  66. 66.
    D. St. James, and P.G. deGennes, Phys. Letters 7, 306 (1963).CrossRefGoogle Scholar
  67. 67.
    H.J. Fink, Phys. Rev. Letters 14, 309 (1965).CrossRefGoogle Scholar
  68. 68.
    G. Fournetand, A. Mailfert, J. Phys. (Paris) 31,357 (1970).CrossRefGoogle Scholar
  69. 69.
    P. Penczynski, Siemens Forschungs und Entwicklungsberichte No.5 2, 296 (1973).Google Scholar
  70. 70.
    P.H. Melville, J. Phys. C 4, 2833 (1971).CrossRefGoogle Scholar
  71. 71.
    R.A. French, Cryogenics 8, 301 (1968).CrossRefGoogle Scholar
  72. 72.
    P. Penczynski, DPG-Frühjahrstagung Münster (1973).Google Scholar
  73. 73.
    R. Grigsby and R.J. Slaughter, J. Phys. D 3, 898 (1970).CrossRefGoogle Scholar
  74. 74.
    T.A. Buchhold and R.L. Rhodenizer, IEEE Trans. Mag. MAG 5, 429 (1969).CrossRefGoogle Scholar
  75. 75.
    J.C. Male, Cryogenics 10, 381 (1970).CrossRefGoogle Scholar
  76. 76.
    R.W. Meyerhoff, IEEE Pub. No. 72 CHO 682–5-TABSC, 1972, p. 194.Google Scholar
  77. 77.
    Brookhaven National Laboratory, Power Transmission Project, Semiannual Report, Technical Note No. 11, March 28, 1973, p. 43.Google Scholar
  78. 78.
    R.G. Rhodes, E.C. Rogers and R.J.A. Seebold, Cryogenics 4, 206 (1964).CrossRefGoogle Scholar
  79. 79.
    T.A. Buchhold and P.J. Molenda, Cryogenics 2,344 (1962).CrossRefGoogle Scholar
  80. 80.
    C.H. Meyer, D.P. Snowden and S.A. Sterling, Rev. Sci. Instr. 42, 1584 (1971).CrossRefGoogle Scholar
  81. 81.
    M.T. Taylor, Conference on Low Temperatures and Electric Power, London (1969), p.61.Google Scholar
  82. 82.
    W. Kafka, Deutsche Patent No. 1, 250, 526.Google Scholar
  83. 83.
    E. Massar, ETZ A89, 335 (1968).Google Scholar
  84. 84.
    G. Bogner, Proc. of the ICEC 3-Conference, Berlin 1970, p.35.Google Scholar
  85. 85.
    J.A. Baylis, IEEE Pub. No. 72 CHO 682–5-TABSC, 1972, p. 182.Google Scholar
  86. 86.
    M.J. Chant, Cryogenics 7, 351 (1967).Google Scholar
  87. 87.
    P.S. Vincett, Brit. J. Appi. Phys. (J. Phys. D.) Ser. 2, 2, 699 (1969).CrossRefGoogle Scholar
  88. 88.
    L. Jedynak, J. Appi. Phys. 35, 1727 (1964).CrossRefGoogle Scholar
  89. 89.
    A.H. Powell et al. Int. J. Electronics, 21, 393 (1966).CrossRefGoogle Scholar
  90. 90.
    J.S.T. Looms et al., Brit. J. Appi. Phys. (J. Phys. D.) Ser. 2, 1, 377 (1968).CrossRefGoogle Scholar
  91. 91.
    R.P. Little and S.T. Smith, IEEE Trans, on Electron Devices E.D.12, 77 (1965).CrossRefGoogle Scholar
  92. 92.
    R. Rohrbach, CERN Report 64–50 (1964).Google Scholar
  93. 93.
    P. Graneau and J. Jeanmonod, IEEE Trans, on Electr. Insul. EI 6 39 (1971).CrossRefGoogle Scholar
  94. 94.
    R. Hawley, Vacuum, 18, 383 (1968).CrossRefGoogle Scholar
  95. 95.
    O. Milton, IEEE Trans, on Electr. Insul. EI7, 9 (1972).CrossRefGoogle Scholar
  96. 96.
    J. Shannon et al,, J. Vac. Sci. Tech. 2, 234 (1965).CrossRefGoogle Scholar
  97. 97.
    D.A. Swift, Vacuum 18, 583 (1968).CrossRefGoogle Scholar
  98. 98.
    J. Thoris et al., Cryogenics 10, 147 (1970).CrossRefGoogle Scholar
  99. 99.
    B. Fallou et al., Cryogenics 10, 142 (1970).CrossRefGoogle Scholar
  100. 100.
    J. Gerhold, Cryogenics 12, 370 (1972).CrossRefGoogle Scholar
  101. 101.
    G. Matthäus and P. Massek, Siemens Forschungslaboratorium, Erlangen (1973).Google Scholar
  102. 102.
    B. Fallou, et al., Low Temperatures and Electric Power, London 1969, Proc. Conf. Int. Inst. Refrig., Comm. 1, Pergamon Press, New York 1970, p.377.Google Scholar
  103. 103.
    R. J. Meats, (to be published).Google Scholar
  104. 104.
    K.N. Mathes, IEEE Transactions on Electr. Insul. EI2 24 (1967).CrossRefGoogle Scholar
  105. 105.
    J.A. Gardner, AIAA Journal 7, 1639 (1969).CrossRefGoogle Scholar
  106. 106.
    R.N. Allan and E. Kuffel, Proc. IEE 115, 432 (1968).Google Scholar
  107. 107.
    G. Matthäus and P. Massek, Siemens Forschungslaboratorium, Erlangen (1973).Google Scholar
  108. 108.
    E.B. Forsyth et al., Cryogenic Engineering Conference 1973, Paper No. J-2 Atlanta, August 8, 1973 (to be published).Google Scholar
  109. 109.
    K.G. Müller, Vakuumtechnische Berechnungsgrundlagen Verlag Chemie Weinheim 1961.Google Scholar
  110. 110.
    L. Deschamps, Y. Jegouand, A.M. Schwab, Report on Electricity in France, April 1972.Google Scholar
  111. 111.
    P.E. Glaser, Machine Design 39, 146 (1967).Google Scholar
  112. 112.
    P.E. Glaser, J.A. Black, R.S. Lindstrom, F.E. Ruccia and A.E. Wechsel, NASA Sp-5027 (1967).Google Scholar
  113. 113.
    G. Bognerand,  F. Schmidt, Naturwissenschaften 57, 414 (1970).CrossRefGoogle Scholar
  114. 114.
    H. Heumann, Mitteilungen der Kabelwerke der AEG-Telefunken - Gruppe 4/1972.Google Scholar
  115. 115.
    G. Bogner, Autumn School entitled, HerbstschuleGoogle Scholar
  116. 116.
    über Anwendung der Supraleitung in der Elektrotechnik und Hochenergiephysik, Titisee (1972), p. V1-V40.Google Scholar
  117. 117.
    H. Morihara et al., Cryogenic Engineering Conference 1973, Paper No. J-4 Atlanta, Aug. 8, 1973 (to be published).Google Scholar
  118. 118.
    R.V. Smith, Cryogenics,9, 11 (1969).CrossRefGoogle Scholar
  119. 119.
    V. Arp, et al., NBS-Report No. 10, p.703, July 1971.Google Scholar
  120. 120.
    K. Edney et al., Cryogenics 7, 355 (1967).Google Scholar
  121. 121.
    W.G. Steward et al., Developments in Mechanics 4, 1513 (1967), Johnson Publishing Co., New York.Google Scholar
  122. 122.
    K. Kellner et al., International Institute of Refrigeration 1970, p. 195 (Pergamon Press Ltd.).Google Scholar
  123. 123.
    D.N.H. Cairns et al., International Institute of Refrigeration 1970, p. 155 (Pergamon Press Ltd.).Google Scholar
  124. 124.
    C. Laverick, Cryogenics 11, 442 (1971).CrossRefGoogle Scholar
  125. 125.
    G. Bogner, Cryogenic Engineering Conference 1973, Paper No. 1–1, Atlanta, USA (to be published).Google Scholar
  126. 126.
    T.R. Strobridge, IEEE Transactions on Nuclear Science 16, 1104, (1969).CrossRefGoogle Scholar
  127. 127.
    W.H. Hogan, Cryogenic Engineering Conference 1973, Paper No. A-2 Atlanta,USA (to be published).Google Scholar
  128. 128.
    E.C. Rogers, R.J. Slaughter and D.A. Swift, Proc. IEE, 118, 1493 (1971).Google Scholar
  129. 129.
    E. Bochenek, HGÜ -Colloquium in Heidelberg, October 1971.Google Scholar
  130. 130.
    R. Mcgee, Rev. Sei. Instr. 30, 98 (1959).CrossRefGoogle Scholar
  131. 131.
    J.M. Lock, Cryogenics 9, 438 (1969).Google Scholar
  132. 132.
    R. Agsten, Cryogenics 13, 141 (1973).CrossRefGoogle Scholar
  133. 133.
    J.W.L. Köhler, G. Prastand, A.K. Dejonge, Proceedings of the Third International Cryogenic Engineering Conference, Berlin, May 25, 1970, p. 192.Google Scholar
  134. 134.
    M. Rauh, Dissertation 1971, Juris-Druck and Verlag, Zurich.Google Scholar
  135. 135.
    J.E.C. Williams, Cryogenics 3, 234 (1963).CrossRefGoogle Scholar
  136. 136.
    F. Lange, Cryogenics 10, 398 (1970).CrossRefGoogle Scholar
  137. 137.
    D. Glisewell and E.U. Haebel, Proceedings of the Third International Cryogenic Engineering Conference, Berlin, May 25, 1970, p. 187.Google Scholar
  138. 138.
    F. Schmidt and P. Massek, Deutsche Auslegeschrift 2,163,270.Google Scholar
  139. 139.
    F. Schmidt, G. Matthäus and P. Massek, Deutsche Auslegeschrift 2,164,706.Google Scholar
  140. 140.
    K.R. Efferson, Rev. Sei. Instr. 38, 1776 (1967).CrossRefGoogle Scholar
  141. 141.
    P. Denzel, Grundlagen der Übertragung Elektrischer Energie Springer Verlag, Berlin-Heidelberg-New York, 1966.CrossRefGoogle Scholar
  142. 142.
    H.M. Long, W.T. Beall, L.K. Eigenbrod, R.W. Meyerhoff, and J. Notara, Edison Elec. Inst. Project RP 78–7 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • G. Bogner
    • 1
  1. 1.Research Laboratories of Siemens AGErlangenGermany

Personalised recommendations