Advertisement

High Speed Magnetically Levitated and Propelled Mass Ground Transportation

  • Y. Iwasa
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 1)

Abstract

Most of us who have come to the NATO Advanced Study Institute could come because reliable air flights were available, and because the fare was reasonable. Speed, reliability, capacity, and cost of modern transportation have all made it possible to have international Institutes such as this.

Keywords

Drag Force Lift Force Magnetic Levitation Maglev System Compensation Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Miller, M. Cheslow, N.T Ebersole, J. Gerba, and D. J. Igo, “Recommendations for Northeast Corridor Transportation. Main Report. Volume 2, ” Department of Transportation, Washington, D.C. Office of Systems Analysis and Information.(September, 1971).Google Scholar
  2. 2.
    Japanese National Railways, Facts and Figures, 1970 Edition (in Japanese), Japanese National Railways, Tokyo, Japan.Google Scholar
  3. 3.
    T. Oku, Y. Kyotani, and T. Sanuki, Super High Speed Line, (in Japanese), Chuokoron-sha, Tokyo (1971). (.An English edition, translated, edited, and supplemented by Y. Iwasa, will be published by the M.I.T. press in 1974.)Google Scholar
  4. 4.
    G.R. Polgreen, New Applications of Modern Magnets, Boston Technical Publishers, Inc., Newton, Massachusetts (1970).Google Scholar
  5. 5.
    J.R. Powell, American Society of Mechanical Engineers, Paper 63-RR-4 (1963).Google Scholar
  6. 6.
    J.A. Ross, Proc. of the IEEE 61, 617 (1973).CrossRefGoogle Scholar
  7. 7.
    C.A. Guderjahn, S.L. Wipf, H.J. Fink, R.W. Boom, K.E. MacKenzie, D. Williams, and T. Downey, J. Appl. Phys. 40, 2133 (1969).CrossRefGoogle Scholar
  8. 8.
    J.R. Reitz, J. Appl. Phys. 41, 2067 (1970).CrossRefGoogle Scholar
  9. 9.
    P.L. Richards and M. Tinkham, T. Appl. Phys. 43, 2680 (1972).CrossRefGoogle Scholar
  10. 10.
    L. Urankar and J. Miericke, to appear in Applied Physics (October, 1973).Google Scholar
  11. 11.
    E. Ohno, M. Iwamoto, and T. Yamada, Proc. of the IEEE 61, 579 (1973).CrossRefGoogle Scholar
  12. 12.
    J.R. Powell and G.T. Danby, Cryogenics 11, 192 (1971).CrossRefGoogle Scholar
  13. 13.
    R.H. Borcherts and L.C. Davis, J. Appl.Thys. 43, 2418 (1972).CrossRefGoogle Scholar
  14. 14.
    Y. Iwasa, J. Appl. Phys. 44, 858 (1973).CrossRefGoogle Scholar
  15. 15.
    R.S. Kasevich, “Linear Synchronous Motor Theory, ” in an unpublished report Magneplane Linear Synchronous Motor Study by Raytheon Company, Way land, Mass. (1973).Google Scholar
  16. 16.
    H.H. Kolm and R.D. Thornton, IEEE Conf. Record, IEEE Cat. No. 72 CHO 682–5 TABSC, (1972).Google Scholar
  17. 17.
    J.H. Schultz, “Electric Control of Linear Synchronous Motor, ” S.M. Thesis, MIT, unpublished, (August, 1973).Google Scholar
  18. 18.
    J.R. Reitz, R.H. Borcherts, L.C. Davis, T.K. Hunt, D.F. Wilkie, “Preliminary Design Studies of Magnetic Suspensions for High Speed Ground Transportation, ” a report by Ford Motor Company prepared for The Office of Research, Development and Demonstrations, Department of Transportation, Washington, D.C. (March, 1973).Google Scholar
  19. 19.
    “High Speed Ground Transportation Alternatives Study, ”U.S. Department of Transportation, Washington, D.C. (January, 1973).Google Scholar
  20. 20.
    Z.J.J. Stekly, T.A. de Winter, J.A. Vitkevich, J.M. Tarrh, and A.E. Emanuel, “Design Study of Superconducting Magnetic Levitation Pads, ” A report prepared by Magnetic Corporation of America for Ford Motor Company (April, 1973).Google Scholar
  21. 21.
    H.H. Kolm, M.J. Leupold, and R.D. Hay, Advances in Cryogenic Engineering, Vol. 11, Ed. K.D. Timmerhaus, Plenum Press (New York, 1966).Google Scholar
  22. 22.
    Mr. Morpurgo, in Proc. of the 1968 Summer Study on Superconducting Devices and Accelerations, Ed. A.G. Prodell (Brookhaven National Laboratory, Upton, New York 1969), p. 953.Google Scholar
  23. 23.
    R.L. Bailey, B. Colyer, and G.J. Homer, Rutherford Laboratory Report RHEL/R 258 (December, 1972).Google Scholar
  24. 24.
    Y. Iwasa, Proc. of the IEEE 61, 598 (1973).CrossRefGoogle Scholar
  25. 25.
    H. Aceto, J., C.A. Tobias, and I.L. Silver, IEEE Trans, Magn. Vol. MAG-6, 368 (1970).CrossRefGoogle Scholar
  26. 26.
    M. Tinkham, J. Appl. Phys. 44, 2385 (1973).CrossRefGoogle Scholar
  27. 27.
    T.K. Hunt, “ac Losses in Superconducting Magnets at Low Excitation Levels, ” submitted to J. Appl. Phys.Google Scholar
  28. 28.
    T. Satow, M. Tanaka, and T. Ogama, “ac Losses in Multifilamentary Superconducting Composites for Levitated Trains under ac and dc Magnetic Fields, ” presented at The 1973 Cryogenic Engineering Conference, Atlanta, Georgia (August, 1973).Google Scholar
  29. 29.
    P.F. Dienemann and J.P. Large, “Cost Analyses for Northeast Corridor Transport Project, Volume 1. High Speed Ground Modes, ” Department of Transportation, Washington, D.C., NECTP-22 (December 1969).Google Scholar
  30. 30.
    D.W. Jackson, G.S. Chawla, and P.A. Wheeler, “Report on a Study of Magneplane Power System and Guideway, ” An unpublished report prepared for MIT Francis Bitter National Magnet Laboratory by United Engineers & Constructors Inc. Boston, Massachusetts (June. 1973).Google Scholar
  31. 31.
    M. Yano, “Magneplane Cost Analysis, ” S. M. Thesis, Massachusetts Institute of Technology, unpublished, (August, 1973).Google Scholar
  32. 32.
    K. Oshima and Y. Kyotani, “High Speed Transportation Levitated by by Superconducting Magnet, ” presented at the 1973 Cryogenic Engineering Conference, Atlanta, Georgia (August, 1973).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Y. Iwasa
    • 1
  1. 1.Francis Bitter National Magnet LaboratoryMITCambridgeUSA

Personalised recommendations