Advertisement

Applications of Superconductivity to AC Rotating Machines

  • Joseph L. SmithJr.
  • Thomas A. Keim
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 1)

Abstract

The development of high-field superconducting wire, suitable for fabrication into windings for electric machines, presents the opportunity for significant improvements in rotating electric machines. Previously copper and iron have been the obvious materials to use. In the evolution of the machines since the turn of the century, the most significant changes have been in the insulations and the coolants. The thermosetting resins have completely replaced the older asphalt impregnated insulations which had in turn replaced varnished insulations. Mica has also been used with thermosetting resins for insulations which must withstand high electric stress. Metallurgical improvements have also improved the performance of the magnetic circuits of the machines.

Keywords

Heat Exchanger Liquid Helium Circuit Breaker Flux Linkage Synchronous Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kazovskiy, Kartsev and Shaktarin, Superconducting Magnet Systems, Science Publishing Company, Leningrad, 1967, pp. 186–190(in Russian).Google Scholar
  2. 2.
    H.H. Woodson, J.L. Smith, Jr., P. Thullen, and J.L. Kirtley, IEEE Trans. Power Apparatus and Systems, Vol. PAS-90, No. 2, March/April 1971, p. 620.CrossRefGoogle Scholar
  3. 3.
    H.H. Woodson, Z.J.J. Stekly, and E. Halas, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-85, No. 3, March 1966, p. 264.CrossRefGoogle Scholar
  4. 4.
    Z.J.J. Stekly, H.H. Woodson, A.M. Hatch, L.O. Hoppie, and E. Halas, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-85, No. 3, March 1966, p. 274.CrossRefGoogle Scholar
  5. 5.
    C.J. Oberhauser and H. R. Kinner, Advances in Cryogenic Engineering, Vol. 13, K.D. Timmerhaus, Editor, 1968.Google Scholar
  6. 6.
    P. Thullen, J.L. Smith, Jr., and W.D. Lee, Progress in Refrigeration Science and Technology, Proceedings of the XIII Congress of Refrigeration, Vol. 1, AVI Publishing, Westport, Conn., 1973.Google Scholar
  7. 7.
    P. Thullen, J.C. Dudley, D.L. Greene, J.L. Smith, Jr., and H.H. H.H. Woodson, IEEE Trans. Power Apparatus and Systems, Vol. PAS-90, No. 2 March/April 1971, p. 611.CrossRefGoogle Scholar
  8. 8.
    Thomas H. Einstein, Electric Utility Power Generation, Sc.D. Thesis, Department of Mechanical Engineering, MIT, Cambridge, Massachusetts, December 1970.Google Scholar
  9. 9.
    David Lee Luck, #x0022;Electromechanical and Thermal Effects of Faults Upon Superconducting Generators[t1],#x0022; Ph.D. Thesis, Department of Electrical Engineering, MIT, Cambridge, Massachusetts, June 1971.Google Scholar
  10. 10.
    C.J. Mole, H.E. Haller and D.C. Litz, Proceedings of 1972 Applied Superconductivity Conference, IEEE Pub. No. 72CH0682–5-TABSC, p. 151.Google Scholar
  11. 11.
    L.R. Lowry, Proceedings of the 1972 Applied Superconductivity Conference, IEEE Pub. No. 72CH0682–5-TABSC, p. 41.Google Scholar
  12. 12.
    A.D. Appleton and A. F. Anderson, Proceedings of the 1972 Applied Superconductivity Conference, IEEE Pub. No. 72CH0682–5-TABSC, p. 136.Google Scholar
  13. 13.
    H.O. Lorch, Proc. IEEE, 120, p. 221 (1973).Google Scholar
  14. 14.
    D. Eckert, F. Lang, M. Endig, G. Muller, and W. Seidel, Proceedings of the 1972 Applied Superconductivity Conference, IEEE Pub. No. 72CH0682–5-TABSC, p. 128.Google Scholar
  15. 15.
    J.R. Kirtley, Jr., IEEE Winter Power Meeting (1971), paper No. 71-CP-155-PWR.Google Scholar
  16. 16.
    J.L. Kirtley, Jr., #x0022;Design and Construction of an Alternator with a Superconducting Field Winding, Ph.D. Thesis, Department of Electrical Engineering, MIT, Cambridge, Massachusetts, August 1971.Google Scholar
  17. 17.
    P. Thullen, A. Bejan, B. Gamble, J.L. Kirtley, Jr., and J.L. Smith, Jr., Advances in Cryogenic Engineering, Vol. 18, p. 372.Google Scholar
  18. 18.
    J.L. Kirtley, Jr., J.L. Smith, Jr., and P. Thullen, IEEE Transactions Paper T 73 137–7. Presented at the IEEE PES Winter Meeting, New York, Jan. 28 - Feb. 2, 1973.Google Scholar
  19. 19.
    P. Thullen, J.L. Smith, Jr., and H.H. Woodson, Edison Elec. Inst., Res. Progress Rep. RP-92, Aug. 9,1971.Google Scholar
  20. 20.
    P. Thullen, J.L. Smith, Jr., and J.L. Kirtley, Edison Elec. Inst., Res. Progress Rep. RP-92, Feb. 15, 1972.Google Scholar
  21. 21.
    P. Thullen, J.L. Smith, Jr., and J.L. Kirtley, Jr., Edison Elec. Inst., Res. Progress Rep. RP-92, Sept. 15, 1972.Google Scholar
  22. 22.
    A. Bejan et al., Paper M-3, Cryogenic Engineering Conference, Georgia Inst, of Technology, Aug. 1973, (to be published in Advances in Cryogenic Engineering, Vol. 19).Google Scholar
  23. 23.
    A. Bejan and J.L. Smith, Jr., (to be published in Cryogenics).Google Scholar
  24. 24.
    R. Barron, Cryogenic Systems, McGraw-Hill, New York, 1966, Chap. 3 and 5.Google Scholar
  25. 25.
    R.H. Kropschot, B.W. Birmingham, and D.B. Mann, Eds., Technology of Liquid Helium, NBS Monograph 111, 1968, Chap. 3 and 4.Google Scholar
  26. 26.
    C.A. Bailey, Ed., Advanced Cryogenics, Plenum Press, London, 1971, Chap. 7.Google Scholar
  27. 27.
    C. Trepp, Low-Temperature and Electric Power, Proceedings of Commission I meeting of IIR, London 1969, Annex 1969–1, p. 31, Bulletin of International Institute of Refrigeration, Paris.Google Scholar
  28. 28.
    T.R. Strobridge, IEEE Trans, on Nuclear Science, Vol. NS-16, No. 3 June 1969, p. 1104.CrossRefGoogle Scholar
  29. 29.
    T. R. Strobridge and D.B. Chelton, Advances in Cryogenic Engineering, Vol. 12, 1967, p. 576.Google Scholar
  30. 30.
    F.E. Maddocks, Advances in Cryogenic Engineering, Vol. 13, 1968, p. 463.Google Scholar
  31. 31.
    R.L. Gessner and D.B. Colyer, Advances in Cryogenic Engineering, Vol. 13, 1968, p. 474.Google Scholar
  32. 32.
    KTO. Lorch, Proceedings IEEE, 120, 221, (1973).Google Scholar
  33. 33.
    T.A. Keim, submitted to IEEE.Google Scholar
  34. 34.
    T.A. Keim, #x0022;Design and Construction of an Excitation System for a Superconducting Alternator, #x0022; Sc.D. Thesis, MIT, January 1973.Google Scholar
  35. 35.
    J.L. Smith, Jr. and J.L. Kirtley, Jr., #x0022;Polyphase Synchronous Alternators Having a Controlled Voltage Gradient Armature Winding, #x0022;U.S. Patents 3, 743, 875 July 3, 1973.Google Scholar
  36. 36.
    J.L. Smith, Jr., #x0022;High Voltage Oil Insulation and Cooled Armature Windings, #x0022; U.S. Patent 3,743, 867, July 3, 1973.Google Scholar
  37. 37.
    J.L. Smith, Jr., #x0022;Superconducting Apparatus with Double Armature Structure, #x0022; U.S. Patent 3,742,265, June 26, 1973.Google Scholar
  38. 38.
    J.L. Kirtley, Jr. And J.L. Smith, Jr., 1973 IEEE Winter Power Meeting, Paper no. C73–138-5.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Joseph L. SmithJr.
    • 1
  • Thomas A. Keim
    • 2
  1. 1.Department of Mechanical EngineeringMITCambridgeUSA
  2. 2.Department of Electrical EngineeringMITCambridgeUSA

Personalised recommendations