Advertisement

Practical Superconducting Materials

  • D. Dew-Hughes
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 1)

Abstract

Superconductors are employed in electrical devices because of two advantages: low (ideally zero) power consumption, and the compactness with which superconducting devices can be designed. The first arises from the absence of electrical resistivity in the superconducting state; the second arises partly because the absence of power dissipation removes the need for internal cooling, and partly from the very high current densities which can be achieved in superconductors. A device with a given power rating will have a smaller size if made from superconducting material; this is of great importance when the device must be transported from factory to site. The upper limit on the power of some devices may be set by the maximum size which can be transported. In rotating machinery, the limit on size, and hence on power, is determined by the magnitude of the centrifugal forces that the rotors can withstand. For both these reasons the superior power densities available with superconductors may allow an upper revision of these limits. Superconductors are likely to find employment in electrical engineering applications involving heavy currents and low voltages. The disadvantage of employing superconductors is the necessity for cooling the device down to, and keeping it at, a temperature of a few kelvins. Superconducting devices are economic only if the reduced power dissipation in the device itself is sufficient to compensate for the power requirements of the refrigeration plant. Even then the capital cost of a superconducting device may be so large as to preclude its replacing a conventional device.

Keywords

Critical Temperature Lorentz Force Critical Current Critical Current Density Critical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.B. Goodman, Rep. Prog. Phys., 29 445 (1966).CrossRefGoogle Scholar
  2. 2.
    P.G. deGennes, “Superconductivity of Metals and Alloys”, Benjamin, New York (1966).Google Scholar
  3. 3.
    D. Saint-James, G. Sarma and E.J. Thomas, “Type II Superconductivity”, Pergamon, Oxford (1969).Google Scholar
  4. 4.
    R.D. Parks (Ed), “Superconductivity”, Dekker, New York (1969).Google Scholar
  5. 5.
    J.D. Livingston and H.W. Schadler, Prog. Mater. Sci., 12, 183 (1964).Google Scholar
  6. 6.
    J.A. Catterall, Metall. Rev., 11, 25 (1966).CrossRefGoogle Scholar
  7. 7.
    D. Dew-Hughes, Mater. Sci. Eng., 1, 2 (1966).CrossRefGoogle Scholar
  8. 8.
    D. Dew-Hughes, Rep. Prog. Phys., 34, 821 (1971).CrossRefGoogle Scholar
  9. 9.
    J. Bardeen, L.N. Cooper and J.R. Schreiffer, Phys. Rev., 108, 1175 (1957).CrossRefGoogle Scholar
  10. 10.
    E. Bücher, F. Heiniger, J. Müheim and J. Müller, Rev. Mod. Phys., 36, 146 (1964).CrossRefGoogle Scholar
  11. 11.
    B.T. Matthias, Prog. Low Temp. Phys. Vol. 2, Ed. C.J. Gorter, North Holland, Amsterdam (1957) p. 138.Google Scholar
  12. 12.
    B.W. Roberts, Nat. Bur. of Stand. Tech. Notes 482 (1968), 724 (1972).Google Scholar
  13. 13.
    G. Gladstone, M.A. Jensen and J.R. Schreiffer, in Ref. 4, p.665.Google Scholar
  14. 14.
    J.J. Hanak, G.D. Cody, J.L. Cooper and M. Rayl, Proc. 8th Int. Conf. Low Temp. Phys. Ed., R.O. Davies, Butterworth, London (1962) p.353.Google Scholar
  15. 15.
    G. Arrhenius, E. Corenzwit, R. Fitzgerald, G.W. Hull, Jr., H.L. Luo, B.T. Matthias and W.H. Zachariasen, Proc. Nat. Acad. Sci., 61, 621 (1968).CrossRefGoogle Scholar
  16. 16.
    R.D. Blaugher, R.E. Hein, J.E. Cox and R.M. Waterstrat, J. Low Temp. Phys., 1, 539 (1969).CrossRefGoogle Scholar
  17. 17.
    L.E. Toth, “Transition Metal Carbides and Nitrides”, Acad. Press, New York (1971).Google Scholar
  18. 18.
    B.T. Matthias, T.H. Geballe and V.B. Compton, Rev. Mod. Phys., 35, 1 (1963).CrossRefGoogle Scholar
  19. 19.
    B.T. Matthias, T.H. Geballe, R.H. Willens, E. Corenzwit and G.W. Hull, Jr., Phys. Rev., 139, A1501 (1965).CrossRefGoogle Scholar
  20. 20.
    G.W. Webb, L.J. Vieland, R.E. Miller and A. Wicklund, Solid State Comm. 9, 1769 (1971).CrossRefGoogle Scholar
  21. 21.
    R. Flückiger, P. Spitzli, F. Heiniger and J. Muller, Phys. Letters, 29A, 407 (1969).Google Scholar
  22. 22.
    R.H. Willens, T.H. Geballe, A.C. Gossard, J.P. Maita, A. Menth, G.W. Hull, Jr., and R.R. Soden, Solid State Comm. 7, 837 (1969).CrossRefGoogle Scholar
  23. 23.
    F. Heiniger, R. Flückiger, A. Junod, J. Muller, P. Spitzli and J.L. Staudenmann, Proc. 12th Int. Conf. on Low Temp. Phys.Google Scholar
  24. 24.
    B.T. Matthias, T.H. Geballe, L.D. Longinotti, E. Corenzwit, G.W. Hull, Jr., R.H. Willens and J.P. Haita, Science 156, 645 (1967).CrossRefGoogle Scholar
  25. 25.
    J. Ruzicka, Zeit. Physik. 237, 432 (1970).CrossRefGoogle Scholar
  26. 26.
    A. Cave, Ph.D. Thesis, UMIST (1972).Google Scholar
  27. 27.
    A. Birch, Ph.D. Thesis, UMIST (1972).Google Scholar
  28. 28.
    B. Mlihlschlegel, Zeit. Physik, 155, 313 (1959).CrossRefGoogle Scholar
  29. 29.
    K. Hechler, G. Horn, G. Otto and E. Saur, J. Low Temp. Phys., 1, 29 (1969).CrossRefGoogle Scholar
  30. 30.
    L.P. Gor#x0027;kov, Sov. Phys. JETP 9 (1960) 1364; 10 998 (1960).Google Scholar
  31. 31.
    C. Caroli, P.G. deGennes, and J. Matricon, Phys. Kondens. Mater., 1, 176 (1963).Google Scholar
  32. 32.
    A.A. Abrikosov, Sov. Phys. JETP, 5 1174 (1957).Google Scholar
  33. 33.
    Y.B. Kim, C.F. Hempstead and A.R. Strnad, Phys. Rev., 139, 1163 (1965).CrossRefGoogle Scholar
  34. 34.
    A.M. Clogston, Phys. Rev. Lett., 9, 266 (1962).CrossRefGoogle Scholar
  35. 35.
    B.S. Chandrasekhar, Appl. Phys. Lett., 1, 7 (1962).CrossRefGoogle Scholar
  36. 36.
    T.G. Berlincourt and R.R. Hake, Phys. Rev. 131, 140 (1963).CrossRefGoogle Scholar
  37. 37.
    L.J. Neuringer and Y. Shapira, Phys. Rev. 140,A1638 (1965).CrossRefGoogle Scholar
  38. 38.
    K. Maki, Physics 1, 21,127,201 (1964).Google Scholar
  39. 39.
    N.R. Werthamer, E. Helfand and P.C. Hohenberg, Phys. Rev., 147, 295 (1966). A.L. Fetter and P.C. Hohenberg, Superconductivity Vol. 2, Ed., R.D. Parks, Marcel Decker, Inc., N.Y.(1969).CrossRefGoogle Scholar
  40. 40.
    R.R. Hake, Appl. Phys. Lett. 10, 189 (1967).CrossRefGoogle Scholar
  41. 41.
    F.B. Silsbee, J. Wash. Acad. Sci., 6, 597 (1916).Google Scholar
  42. 42.
    Y.B. Kim, C.F. Hempstead and A.R. Strnad, Phys. Rev., 131, 2846 (1963).Google Scholar
  43. 43.
    C.P. Bean, Phys. Rev. Lett., 8, 250 (1962).CrossRefGoogle Scholar
  44. 44.
    Y.B. Kim, C.F. Hempstead and A.R. Strnad, Phys. Rev., 129, 528 (1963).CrossRefGoogle Scholar
  45. 45.
    P.W. Anderson, Phys. Rev. Lett., 9, 309 (1962).CrossRefGoogle Scholar
  46. 46.
    W.A. Fietz and W.W. Webb, Phys. Rev., 657 (1969).Google Scholar
  47. 47.
    R.G. Hampshire and M.T. Taylor, J. Phys. F (Met. Physics), 2, 89 (1972).CrossRefGoogle Scholar
  48. 48.
    A.M. Campbell, J.E. Evetts and D. Dew-Hughes, Phil. Mag., 18, 313 (1968).Google Scholar
  49. 49.
    J.D. Livingston, Proc. Summer Study on Superconducting Devices and Accelerators, Brookhaven National Laboratory (1968) p.377.Google Scholar
  50. 50.
    J.I. Gittleman and B. Rosenblum, J. Appi. Phys., 39, 2617 (1968).CrossRefGoogle Scholar
  51. 51.
    R. Labusch, Crystal Lattice Defects, 1, 1 (1969).Google Scholar
  52. 52.
    H. Trauble and U. Essmann, J. Appi. Phys. 39, 4052 (1968).CrossRefGoogle Scholar
  53. 53.
    C.P. Bean and J.D. Livingston, Phys. Rev. Lett., 12, 14 (1964).Google Scholar
  54. 54.
    R.I. Coote, J.E. Evetts and A.M. Bampbell, Can. J. Phys., 50, 421 (1972).CrossRefGoogle Scholar
  55. 55.
    A.V. Narlikar and D. Dew-Hughes, Phys. Stat. Solidi, 6, 383 (1964); J. Mater. Sci., 1, 317 (1966).CrossRefGoogle Scholar
  56. 56.
    D. Dew-Hughes and M.J. Witcomb, Phil. Mag. 26, 73 (1972).CrossRefGoogle Scholar
  57. 57.
    M.J. Witcomb and D. Dew-Hughes, J.Mater.Sci. 8,1383 (1973).CrossRefGoogle Scholar
  58. 58.
    G.W. Bibby, Ph.D. Thesis, Cambridge (1970).Google Scholar
  59. 59.
    D.F. Neal, A.C. Barber, A. Woodcock and J.A.F. Gidley, Acta Met., 19, 143 (1971).CrossRefGoogle Scholar
  60. 60.
    J.J. Hanak and R.E. Enstrom, Proc. 10th Int. Conf. Low Temp. Phys. Ed., M.P. Malkov, Viniti, Moscow (1966) p. 10.Google Scholar
  61. 61.
    E. Nembach, Zeit, Metall., 61, 734 (1970).Google Scholar
  62. 62.
    M.G. Benz, Trans. Metall. Soc. AIME 242, 1067 (1968).Google Scholar
  63. 63.
    P.B. Hart, C. Hill, R. Ogden and C.W. Wilkins, J. Phys. D. (Appi. Phys.), 2, 521 (1969).CrossRefGoogle Scholar
  64. 64.
    J.E. Evetts, A.M. Campbell and D. Dew-Hughes, Phil. Mag., 10, 339 (1964).CrossRefGoogle Scholar
  65. 65.
    P.F. Chester, Rep. Prog. Phys., 30, 561 (1967).CrossRefGoogle Scholar
  66. 66.
    J.D. Livingston, Appi. Phys. Lett., 8, 319 (1966); J. Metals, 18, 698 (1966).CrossRefGoogle Scholar
  67. 67.
    Z.J.J. Stekly, J. Appi. Phys., 37, 324 (1966).CrossRefGoogle Scholar
  68. 68.
    I.D. McFarlane and D. Dew-Hughes, J. Phys. D. (Appi. Phys.), 3, 1423 (1970).CrossRefGoogle Scholar
  69. 69.
    H. Brechyna, Proc. Summer Study on Superconducting Devices and Accelerators, Brookhaven National Laboratory (1968) p. 478.Google Scholar
  70. 70.
    K. Seshan, M. Sc. Thesis, Lancaster (1971).Google Scholar
  71. 71.
    H. Kobayashi, K. Yasukochi and T. Ogasawara, J. Appi. Phys. 9, 889 (1970).Google Scholar
  72. 72.
    R. Hancox, Proc. I.E.E., 133, 1221 (1966).CrossRefGoogle Scholar
  73. 73.
    A.R. Kantrowitz and Z.J.J. Stekly, Appi. Phys. Lett., 6, 56 (1965).CrossRefGoogle Scholar
  74. 74.
    M.N. Wilson, C.R. Walters, J.D. Lewin and P.F. Smith, J. Phys. D. (Appi. Phys.), 3, 1518 (1970).Google Scholar
  75. 75.
    F. London, “Superfluids” Vol. 1, John Wiley, New York (1950).Google Scholar
  76. 76.
    T.A. Buchold, Cryogenics 3, 141 (1963).CrossRefGoogle Scholar
  77. 77.
    J.P. Turneaure and I. Weissman, J. Appi. Phys. 39, 4417 (1968).CrossRefGoogle Scholar
  78. 78.
    J. Halbritter, A. Appi. Phys., 42, 82 (1971).CrossRefGoogle Scholar
  79. 79.
    R.J.A. Seebold, R.M.F. Linford and R.G. Rhodes, J. Phys. D. (Appi. Phys.), 2, 1463 (1969).CrossRefGoogle Scholar
  80. 80.
    R.J.A. Seebold, Ph.D. Thesis, Warwick (1969).Google Scholar
  81. 81.
    W.I. Dunn and P. Hlawiczka, J. Phys. D. (Appi. Phys.), 1, 1469 (1968).CrossRefGoogle Scholar
  82. 82.
    R.M. Easson and P. Hlawiczka, J. Phys. D. (Appi. Phys.), 1, 1477 (1968).CrossRefGoogle Scholar
  83. 83.
    R.M.F. Linford and R.G. Rhodes, J. Appl. Phys. 42, 10 (1971).CrossRefGoogle Scholar
  84. 84.
    S.L. Wipf, Proc. Summer Study on Superconducting Devices and Accelerators, Brookhaven National Laboratory (1968). p.511.Google Scholar
  85. 85.
    A. Echarri and M. Spadoni, Cryogenics 11, 274 (1971).CrossRefGoogle Scholar
  86. 86.
    J.E. Kunzler, E. Buehler, F.S.L. Hsu and J.H. Wernick, Phys. Rev. Lett., 6, 89 (1961).CrossRefGoogle Scholar
  87. 87.
    J.J. Hanak, Metallurgy of Advanced Electronic Materials, Ed., G.E. Brock, Interscience, New York (1963) p.161.Google Scholar
  88. 88.
    R.E. Enstrom, J.J. Hanak and G.W. Cullen, R.C.A. Review, 31, 702 (1970).Google Scholar
  89. 89.
    S. Fukuda, K. Tachikawa and Y. Iwasa, Cryogenics 13, 153 (1973).CrossRefGoogle Scholar
  90. 90.
    A.R. Kaufmann and J.J. Pickett, J. Appl. Phys., 42, 58 (1971).CrossRefGoogle Scholar
  91. 91.
    M. Suenaga and W.B. Sampson, Appl. Phys. Lett., 18, 584 (1971).CrossRefGoogle Scholar
  92. 92.
    K. Tachikawa, Y. Yoshida, and L. Rinderer, J. Mater. Sci., 7, 1154 (1972).CrossRefGoogle Scholar
  93. 93.
    M. Suenaga and W.B. Sampson, Applied Superconductivity Conference, Annapolis, Maryland, May 1972.Google Scholar
  94. 94.
    W.B. Sampson, IVthlnt. Conf. on Magnet Technology, Brook- haven, Long Island, September 1972.Google Scholar
  95. 95.
    J.G. Kohr, T.W. Eagar and R.M. Rose, Metallurgical Trans. AIME, 3, 1177 (1972).CrossRefGoogle Scholar
  96. 96.
    M. Suenaga and W.B. Sampson, Appl. Phys. Lett. 20, 443 (1972).CrossRefGoogle Scholar
  97. 97.
    M.S. Lubell, Cryogenics 12, 340 (1972).CrossRefGoogle Scholar
  98. 98.
    P.A. Battams, Cryogenics 12, 356 (1972).CrossRefGoogle Scholar
  99. 99.
    M.N. Biltcliffe, P.E. Hanley, J.B. McKinnon and P. Roubeau, Cryogenics 12, 44 (1972).CrossRefGoogle Scholar
  100. 100.
    J.G. Kohr, B.P. Strauss and R.M. Rose, I.E.E.E. Trans. Nucl. Sci., NS-18, 716 (1971).CrossRefGoogle Scholar
  101. 101.
    E. Tanaka, T. Fukuda, S. Kuma, T. Yamashita and Y. Onodera, Appl. Phys. Lett., 14, 389 (1969).CrossRefGoogle Scholar
  102. 102.
    B.W. Howlett, Proc. 11th Int. Conf. Low Temp. Phys. Ed., J.F. Allen, St. Andrews (1968) p.869.Google Scholar
  103. 103.
    K. Inoue, K. Tachikawa and Y. Iwasa, Appl. Phys. Lett., 18, 235 (1971).CrossRefGoogle Scholar
  104. 104.
    F.R. Gamble, J.H. Osieki, M. Cais, R. Pisharody, F.J. DiSalvo and T.H. Geballe, Science 174, 493 (1971).CrossRefGoogle Scholar
  105. 105.
    W.A. Little, Phys. Rev., 134, A1416 (1964).CrossRefGoogle Scholar
  106. 106.
    New Scientist, 58, 198 (1973).Google Scholar
  107. 107.
    A. Muller, Zeit. Naturforschung 25a, 1659 (1970).Google Scholar
  108. 108.
    R.A. Hein, Science and Technology of Superconductivity, Ed. W.D. Gregory, W.N. Mathews, Jr. and E.R. Edelsack, Plenum Press, New York (1973) p. 333.CrossRefGoogle Scholar
  109. 109.
    S. Foner, E.J. McNiff, Jr., G.W. Webb, L J. Vieland, R.E. Miller and A. Wicklund, Phys. Letters 38A, 323 (1972).Google Scholar
  110. 110.
    A.M. Campbell and J.E. Evetts, Advances in Physics, 21, 199 (1972).CrossRefGoogle Scholar
  111. 111.
    G. Ziegler, B. Bios, H. Diepers and K. Wohlleben, Zeit. Angewandte Physik 31, 184 (1971).Google Scholar
  112. 112.
    Y. Uzel and H. Diepers, Zeit. Physik 258, 126 (1973).CrossRefGoogle Scholar
  113. 113.
    G.J. vanGurp, Phys. Stat. Sol. 17, K135, (1966).CrossRefGoogle Scholar
  114. 114.
    R. Brand and W.W. Webb, Solid State Comm. 7, 19 (1969).CrossRefGoogle Scholar
  115. 115.
    J.D. Livingston, J. of Metals 18, 698 (1966).Google Scholar
  116. 116.
    Y. Tanaka, K. Tachikawa and K. Sumiyama, J. Jap. Inst. Metals 34, 835 (1970).Google Scholar
  117. 117.
    E. Nembachand K. Tachikawa, J. Less Common Metals 19, 359 (1969).CrossRefGoogle Scholar
  118. 118.
    E. Nembach, K. Tachikawa and S. Takano, Phil. Mag. 21, 869 (1970).CrossRefGoogle Scholar
  119. 119.
    J.R. Gavaler, Appl. Phys. Letters 23, 480 (1973).CrossRefGoogle Scholar
  120. 120.
    Physics Today, 26, 17 (1973).Google Scholar
  121. 121.
    S. Foner and J.R. Gavaler, private communication.Google Scholar
  122. 122.
    S. Foner, E.J. McNiff, Jr., B.T. Matthias, T.H. Geballe, R.H. Willens and E. Corenzwit, Phys. Letters 31A, 349 (1970).Google Scholar
  123. 123.
    J.C. Kohr, T.W. Eagar and R.M. Rose, Metall. Trans. 3, 1177 (1972).CrossRefGoogle Scholar
  124. 124.
    S. Foner, E.J. McNiff, Jr., L.J. Vieland, A. Wicklund, R.E. Miller and G.W. Webb, Proceedings of the 1972 Applied Superconductivity Conference, IEEE Pub. No. 72CH0682–5-TABSC, p. 404.Google Scholar
  125. 125.
    R. Löhberg, T.W. Eagar, UM. Puffer and R.M. Rose, Appl. Phys. Letters 22, 69 (1972), and further improvements have been made (private communications).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • D. Dew-Hughes
    • 1
  1. 1.University of LancasterLancasterEngland

Personalised recommendations