Advertisement

Prostaglandin Synthetase Inhibitors

  • T. Y. Shen
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 13)

Abstract

Since the discovery of aspirin and indomethacin as prostaglandin synthesis inhibitors in 1971 (1), within a short span of five years, literally hundreds of chemical structures have been reported as inhibitors of the prostaglandin synthetase system. These compounds, either as therapeutic agents or as research tools, have become a new class of pharmacological agents. Standard drugs such as indomethacin and aspirin, have been used widely and effectively in delineating the involvement of prostaglandins in various biological phenomena. The general correlation of PG synthetase inhibitory activity and antiinflammatory property in many cases has stimulated an active search for new synthetase inhibitors as potential antiarthritic agents. Recently, notable advances were made in several aspects, which not only facilitated the search for new inhibitors, but also suggested possible directions for further improvements. In this communication some notable chemical features of PG synthetase inhibitors will be reviewed briefly. Some of our findings with two new antiarthritic drugs, sulindac and diflunisal, will be highlighted to illustrate the influence of chemical and pharmacokinetic properties on the safety and selectivity of PG synthetase inhibitors.

Keywords

Synthetase Inhibitor Prostaglandin Biosynthesis Prostaglandin Synthetase Prostaglandin Synthetase Inhibitor Sulindac Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. R. Vane, Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-Like Drugs, Nature New Biol. 231, 232 (1971).PubMedGoogle Scholar
  2. (2).
    M. Hamberg, J. Svensson and B. Samuelsson, Thromboxanes: A New Group of Biologically Active Compounds Derived from Prostaglandin Endoperoxides, Proc. Nat. Acad. Sci. USA, 72, 2994–2998 (1975).PubMedCrossRefGoogle Scholar
  3. (3).
    T. Miyamoto, N. Ogino, S. Yamamoto and O. Hayaishi, Purification of Prostaglandin Endoperoxide Synthetase from Bovine Vesicular Gland Microsomes, J. Biol. Chem. 251, 2629–2636 (1976).PubMedGoogle Scholar
  4. (4).
    G. J. Roth, N. Stanford and P. W. Majerus, Acetylation of Prostaglandin Synthase by Aspirin, Proc. Nat. Acad. Sci., 72, 3073–3076 (1975).PubMedCrossRefGoogle Scholar
  5. (5).
    H. J. Robinson and J. R. Vane, Editors, Prostaglandin Synthetase Inhibitors, Raven Press, New York (1974).Google Scholar
  6. (6).
    R. J. Flower, Drugs which Inhibit Prostaglandin Biosynthesis, Pharmacol. Rev. 26, 33–67 (1974).PubMedGoogle Scholar
  7. (7).
    T. Y. Shen, Prostaglandin Synthetase Inhibitors I, Handbook of Exper. Pharmacol, (in press).Google Scholar
  8. (8).
    F. Kantrowitz, D. R. Robinson, M. B. McGuire and L. Levine, Corticosteroids Inhibit Prostaglandin Production by Rheumatoid Synovia, Nature, 258, 737–739 (1975).PubMedCrossRefGoogle Scholar
  9. (9).
    A. H. Tashjian, Jr., E. F. Voelkel, J. McDonough and L. Levine, Hydrocortisone Inhibits Prostaglandin Production by Mouse Fibrosarcoma Cells, Nature (London), 258, 739–741 (1975).CrossRefGoogle Scholar
  10. (10).
    R. J. Gryglewski, Steroid Hormones, Antiinflammatory Steroids and Prostaglandins, Pharmacol. Res. Commun., 8, 337–348 (1976).PubMedCrossRefGoogle Scholar
  11. (11).
    J. Y. Vanderhoek and W. E. M. Lands, Acetylenic Inhibitors of Sheep Vesicular Gland Oxygenase, Biochim. Biophys, Acta, 296, 374–381 (1973).Google Scholar
  12. (12).
    R. H. Abeles and A. L. Maycock, Suicide Enzyme Inactivators, Accounts of Chem. Res., 9, 313–319 (1976).CrossRefGoogle Scholar
  13. (13).
    C. Malmsten, Some Biological Effects of Prostaglandin Endoperoxide Analogs, Life Sciences 18, 169–176 (1976).PubMedCrossRefGoogle Scholar
  14. (14).
    E. J. Corey, M. Shibasaki, K. C. Nicolaou, C. L. Malmsten and B. Samuelsson, Simple Stereocontrolled Total Synthesis of a Biologically Active Analog of the Prostaglandin Endoperoxides (PGH2, PGG2), Tetrahedron Lett. 737–740 (1976).Google Scholar
  15. (15).
    T. J. Leeney, P. R. Marsham, G. A. F. Ritchie and M. W. Senior, Inhibitors of Prostaglandin Biosynthesis: A Bicyclo -[2,2,1] — Peptene Analogue of “2” Series Prostaglandins and Related Derivatives, Prostaglandins, 11, 953–960 (1976).PubMedCrossRefGoogle Scholar
  16. (16).
    R. S. Farr, Editorial, J. Allergy, 45, 321 (1970).CrossRefGoogle Scholar
  17. (17).
    L. H. Rome, W. E. M. Lands, G. J. Roth and P. W. Majerus, Aspirin as a Quantitative Acetylating Reagent for the Fatty Acid Oxygenase that Forms Prostaglandins, Prostaglandins 11, 23–29 (1976).PubMedCrossRefGoogle Scholar
  18. (18).
    C. Patrono, G. Ciabattoni, F. Greco and D. Grossi-Belloni, Comparative Evaluation of the Effects of Aspirin-Like Drugs on Prostaglandin Production by Human Platelets and Synovial Tissue, Advances in Prostaglandins and Thromboxane Research, Editors B. Samuelsson and R. Paoletti, Raven Press, New York, 1976, Vol. 1, pp. 125–131.Google Scholar
  19. (19).
    J. Hannah, W. V. Ruyle, A. Matzuk, H. Jones, K. Kelley, W. J. Holtz, B. E. Witzel, R. Houser, L. H. Sarett and T. Y. Shen, Diflunisal, A Novel Long-Acting and Potent Salicylate, In Prep.Google Scholar
  20. (20).
    T. Y. Shen, E. A. Ham, V. J. Cirillo and M. Zanetti, Structure-Activity Relationship of Certain Prostaglandin Synthetase Inhibitors, Prostaglandin Synthetase Inhibitors, Ed. J. R. Vane and H. R. Robinson, Raven Press, New York, pp. 19–31 (1974).Google Scholar
  21. (21).
    S. L. Steelman, C. T. S. Sibinga, P. Schulz, W. J. H. Vanden Heuvel and K. F. Tempero, The Effect of Diflunisal on Prostaglandin Excretion and Blook Platelet Function in Normal Subjects, In Press.Google Scholar
  22. (22).
    K. Hoogsteen and N. R. Trenner, Structure and Conformation of cis and trans Isomers of l(p-chlorobenzylindene)-2-methyl-5-methoxy-3-indenyl acetic acid, J. Org. Chem., 35, 521 (1970).PubMedCrossRefGoogle Scholar
  23. (23).
    T. J. Kistenmacher and R. E. Marsh, Crystal and Molecular Structure of an Antiinflammatory Agent, Indomethacin, l-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole-3-acetic acid, J. Am. Chem. Soc, 94, 1340–1345 (1972).PubMedCrossRefGoogle Scholar
  24. (24).
    T. Y. Shen, B. E. Witzel, H. Jones, B. O. Linn, J. McPherson, R. Greenwald, M. Fordice and A. Jacobs, Synthesis of a New Antiinflammatory Agent, Cis-5-Fluoro-2-Methyl-l-[P-(Methylsulf-inyl) Benzylidenyl] Indene-3-Acetic Acid.Google Scholar
  25. (25).
    C. G. Van Arman, E. A. Risley, G. W. Nuss, H. B. Hucker and D. E. Duggan, Pharmacology of Sulindac in Clinoril, The Treatment of Rheumatic Disorders, Edited by E. C. Huskisson and P. Franchimont, Raven Press, New York, 1976, pp. 9–36.Google Scholar
  26. (26).
    E. L. Tolman, J. E. Birnbaum, F. S. Chiccarelli, J. Panagides and A. E. Sloboda, Inhibition of Prostaglandin Activity and Synthesis by Fenbufen (A New Nonsteroidal Antiinflammatory Agent) and One of its Metabolites, Advances in Prostaglandin and Thromboxane Research, Ed. B. Samuelsson and R. Paoletti, Vol. 1, 133–138, Raven Press, New York (1976).Google Scholar
  27. (27).
    T. Y. Shen, Perspectives in Nonsteroidal Antiinflammatory Agents, Angew Chemie (int. ed.) 11, 460–472 (1972).CrossRefGoogle Scholar
  28. (28).
    E. C. Ku and J. M. Wasvary, Inhibition of Prostaglandin Synthetase by Pirprofen Studies with Sheep Seminal Vesicle Enzyme, Biochim. Biophy. Acta 384, 360–368 (1975).Google Scholar
  29. (29).
    C. Patrono, G. Ciabattoni and D. Grossi-Belloni, InVitro and In Vivo Inhibition of Prostaglandin Synthesis by Feno-profen, A. Nonsteroid Antiinflammatory Drug, Pharmacol. Res. Comm. 6, 509–518 (1974).CrossRefGoogle Scholar
  30. (30).
    L. H. Rome and W. E. M. Lands, Structural Requirements for Time-Dependent Inhibition of Prostaglandin Biosynthesis by Antiinflammatory Drugs, Proc. Natl. Acad. Sci. 72, 4863–4865 (1975).PubMedCrossRefGoogle Scholar
  31. (31).
    H. Zwarenstein, N. Sapeika and J. H. Holmes, Effect of Anti-Inflammatory Drugs on Lipase InVitro, Res. Comm. Chem. Pathol. Pharmacol., 13, 563 (1976).Google Scholar
  32. (32).
    R. W. Egan, J. L. Humes, C. A. Eckert, M. Galavage and F. A. Kuehl, Jr., The Influence of Phenols and Related Compounds on Inhibition of Prostaglandin Biosynthesis by Nonsteroidal Antiinflammatory Agents, Fed. Proc. 35, 1652 (1976).Google Scholar
  33. (33).
    G. Arthurson and C. E. Jonsson, Stimulation and Inhibition of Biosynthesis of Prostaglandins in Human Skin by Some Hydroxy-ethylated Rutosides, Prostaglandins, 10, 941–948 (1975).CrossRefGoogle Scholar
  34. (34).
    T. Y. Shen, Non-acidic Antiinflammatory Agents, R. A. Scherrer and M. W. Whitehouse Editors, Antiinflammatory Agents, Acad. Press, New York (1974) Vol. II, pp. 179–207.Google Scholar
  35. (35).
    R. L. Clark, N. Jensen, A. A. Penolano, T. Lanza and T. Y. Shen (Unpublished).Google Scholar
  36. (36).
    P. Gund and T. Y. Shen, A Model of the Antiinflammatory Receptor Mechanism of Prostaglandin Biosynthesis (1976).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • T. Y. Shen
    • 1
  1. 1.Merck Sharp & Dohme Research LaboratoriesRahwayUSA

Personalised recommendations