Influence of Prostaglandins on Central Functions

  • R. Fumagalli
  • G. C. Folco
  • D. Longiave
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 13)


Biologically active compounds have been described in brain and cerebrospinal fluid some twenty years ago. These substances behaved like unsaturated acidic lipids, displayed direct effects on a number of isolated tissue preparations and influenced the action of known agonists on some classical experimental model. In the early sixties some of these compounds were chemically characterized, their presence in the Central Nervous System (CNS) definitely assessed, and found to correspond to prostaglandins (PGs). The function of prostaglandins in CNS has, since then, become a stimulating goal. The recent discovery that brain cortex is able to form thromboxanes from endogenous precursors provides new impetus to research in this field and opens new perspectives to the understanding of the possible roles played by prostaglandins in the Central Nervous System. The aim of this chapter is to update (end of June 1976) current knowledge on prostaglandins as related to CNS, previously discussed and reported (1–3).


Purkinje Cell Cyclic Nucleotide Cerebral Vasospasm Free Arachidonic Acid Endogenous Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    HORTON, E.W., (1972). Prostaglandins. In: Monographs on Endocrinology, vol. 7, Springer-Verlag, New YorkGoogle Scholar
  2. 2.
    COCEANI, F., (1974). Prostaglandins and the Central Nervous System. Arch. Intern. Med. 133, 119–132PubMedGoogle Scholar
  3. 3.
    WOLFE, L.S., (1975). Possible roles of prostaglandins in the Nervous System. In: Advances in Neurochemistry. vol, 1, Eds. B.W. Agranoff and M.H. Aprison, Plenum Publ. Corp., New York, pp. 1–49Google Scholar
  4. 4.
    SAMUELSSON, B., (1964). Identification of a smooth muscle-stimulating factor in bovine brain. Biochim, Biophys. Acta, 84, 218–219Google Scholar
  5. 5.
    AMBACHE, N., BRUMMER, H.C., ROSE, J.G. and WHITING, J., (1966). Thin-layer chromatography of spasmogenic unsaturated hydroxy-acids from various tissues. J. Physiol. (Lond.), 185, 77–78PGoogle Scholar
  6. 6.
    HOLMES, S.W. and HORTON, E.W. (1968). Prostaglandins and the Central Nervous System. In: Worcester Symposium on Prostaglandins, Eds. P.W. Ramwell and J.E. Shaw, John Wiley & Sons Inc., New York, pp. 21–36Google Scholar
  7. 7.
    HOLMES, S.W. and HORTON, E.W. (1968). The identification of four prostaglandins in dog brain and their regional distribution in the Central Nervous System. J. Physiol. (Lond.), 195, 731–741Google Scholar
  8. 8.
    WOLFE, L.S., COCEANI, F. and PACE-ASCIAK, C. (1967). Brain prostaglandins and studies of the action of prostaglandins on the isolated rat stomach. In: Nobel Symposium 2 on Prostaglandins, Eds. S. Bergström and B. Samuelsson, Almqvist & Wiksell Publ., Stockholm, pp. 265–275Google Scholar
  9. 9.
    HORTON, E.W. and MAIN, I.H.M. (1967). Identification of prostaglandins in central nervous tissues of the cat and chicken. Br. J. Pharmacol. 30, 582–602.Google Scholar
  10. 10.
    KATAOKA, K., RAMWELL, P.W. and JESSUP, S. (1967). Prostaglandins: Localization in subcellular particles of rat cerebral cortex. Science, 157, 1187–1189.PubMedGoogle Scholar
  11. 11.
    LUNT, G.G. and ROWE, C.E. (1968). The production of unesterified fatty acid in brain. Biochim. Biophys. Acta, 152, 681–693.PubMedGoogle Scholar
  12. 12.
    BAZAN, N.G. (1970). Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218, 1–10.PubMedGoogle Scholar
  13. 13.
    BAKER, R.R. and THOMPSON, E. (1972). Positional distribution and turnover of fatty acids in phosphatidic acid, phosphoinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo. Biochim. Biophys. Acta, 270, 489–503.PubMedGoogle Scholar
  14. 14.
    HOLUB, B.J., KUKSIS, A. and THOMPSON, W. (1970). Molecular species of mono-, di-, and triphospho-inositides of bovine brain. J. Lipid Res. 11, 558–564.PubMedGoogle Scholar
  15. 15.
    WOLFE, L.S., PAPPIUS, H.M. and MARION J. (1976). The biosynthesis of prostaglandins by brain tissue “in vitro”. In: Advances in prostaglandins and thromboxane research, Eds. B. Samuelsson and R. Paoletti, Raven Press, New York, pp. 305–312.Google Scholar
  16. 16.
    NICOSIA, S. and GALLI, G. (1975). A mass fragmento-graphic method for the quantitative evaluation of brain prostaglandin biosynthesis. Prostaglandins, 9, 397–403.PubMedGoogle Scholar
  17. 17.
    RAMWELL, P.W. and SHAW, J.E. (1966). Spontaneous and evoked release of prostaglandins from cerebral cortex of anesthetized cats. Am. J. Physiol. 211, 125–134.PubMedGoogle Scholar
  18. 18.
    RAMWELL, P.W. and SHAW, J.E. (1967). Prostaglandin release from tissues by drug, nerve and hormone stimulation. In: Nobel Symposium 2 on Prostaglandins, Eds. S. Bergström and B. Samuelsson, Almqvist & Wiksell Publ., Stockholm, pp. 283–292.Google Scholar
  19. 19.
    BRADLEY, P.B., SAMUELS, G.M.R. and SHAW, J.E. (1969). Correlation of prostaglandin release from the cerebral cortex of cats with electro-corticogram, following stimulation of the reticular formation. Br. J. Pharmacol., 37, 151–157.PubMedGoogle Scholar
  20. 20.
    COCEANI, F. and WOLFE, L.S. (1965). Prostaglandins in brain and the release of prostaglandin-like compounds from the cat cerebellar cortex. Can. J. Physiol. Pharmacol., 43, 445–450.PubMedGoogle Scholar
  21. 21.
    RAMWELL, P.W., SHAW, J.E. and JESSUP, R. (1966). Spontaneous and evoked release of prostaglandins from frog spinal cord. Am. J. Physiol., 211, 998–1004.PubMedGoogle Scholar
  22. 22.
    MATSUURA, S., KAWAGUCHI, S., ICHIKI, M., SORIMACHI, M., KATAOKA, K. and INOUYE, A. (1969). Perfusion of frog’s spinal cord as a convenient method for neuro-pharmacological studies. Eur. J. Pharmacol. 6, 13–16.PubMedGoogle Scholar
  23. 23.
    COCEANI, F., PUGLISI, L. and LAVERS, B. (1971). Prostaglandins and neuronal activity in spinal cord and cuneate nucleus. Ann. N.Y. Acad. Sci. 180, 289–301.PubMedGoogle Scholar
  24. 24.
    FELDBERG, W. and MYERS, R.D. (1966). Appearance of 5-hydroxytryptamine and an unidentified pharmacologically active lipid acid in effluent from perfused cerebral ventricles. J. Physiol. (Lond.), 184, 837–855.Google Scholar
  25. 25.
    HOLMES, S.W. (1970). The spontaneous release of prostaglandins into the cerebral ventricles of the dog and the effect of external factors on this release, Br. J. Pharmacol. 37, 653–658.Google Scholar
  26. 26.
    BELESLIN, D.B., RADMANOVIC, B.Z. and RAKIC, M.M. (1971). Release during convulsions of an unknown substance into the cerebral ventricles of the cats brain. Brain Res. 35, 625–627.PubMedGoogle Scholar
  27. 27.
    BELESLIN, D.B. and MYERS, R.D. (1971). Release of an unknown substance from brain structures of un-anaesthetized monkeys and cats. Neuropharmacology, 10, 121–124.Google Scholar
  28. 28.
    HAMBERG, M., ISRAELSSON, U. and SAMUELSSON, B. (1971). Metabolism of prostaglandin E2 in guinea pig liver. Ann. N.Y. Acad. Sci. 180, 164–180.PubMedGoogle Scholar
  29. 29.
    LESLIE, C.A. and LEVINE, L. (1973). Evidence for the presence of a prostaglandin E2-9-keto reductase in rat organs. Biochem. Biophys. Res. Comm., 52, 717–724.PubMedGoogle Scholar
  30. 30.
    PAPPIUS, H.M., ROSTWOROWSKI, K. and WOLFE, L.S. (1974), Biosynthesis of prostaglandin F and E2 by brain tissue in vitro. Trans. Amer. Soc. Neurochem., 5, 119 (Abstract), and unpublished results.Google Scholar
  31. 31.
    BOSISIO, E., GALLI, C., GALLI, G., NICOSIA, S., SPAGNUOLO, C. and TOSI, L. (1976). Correlation between release of free arachidonic acid and prostaglandin formation in brain cortex and cerebellum. Prostaglandins, 11, 773–781.PubMedGoogle Scholar
  32. 32.
    PRICE, C.J. and ROWE, C.E. (1972). Stimulation of the production of unesterified fatty acids in nerve endings of guinea pig brain “in vitro” by noradrenalin and 5-hydroxytryptamine. Biochem. J., 126, 575–585.PubMedGoogle Scholar
  33. 33.
    COLLIER, H.O.J., McDONALD-GIBSON, W.J. and SAEED, S.A. (1974). Morphine and apomorphine stimulate prostaglandin production by rabbit brain homogenate. Brit. J. Pharmacol., 52, 116P.Google Scholar
  34. 34.
    BURSTEIN, S. and RAZ, A. (1972). Inhibition of prostaglandin E2 biosynthesis by Δ1-tetrahydrocannabinol. Prostaglandins, 2, 369–374.PubMedGoogle Scholar
  35. 35.
    LEE, R.E. (1974). The influence of psychotropic drugs on prostaglandin biosynthesis. Prostaglandins, 5, 63–68.PubMedGoogle Scholar
  36. 36.
    KUNZE, H., BOHN, E. and BAHRKE, G. (1975). Effects of psychotropic drugs on prostaglandin biosynthesis in vitro. J. Pharm. Pharmac. 27, 880–881.Google Scholar
  37. 37.
    WOLFE, L.S., ROSTWOROWSKI, K. and MARION, J. (1976). Endogenous formation of the prostaglandin endoperoxide metabolite, thromboxane B2, by brain tissue. Biochem. Biophys. Res. Comm. 70, 907–913.PubMedGoogle Scholar
  38. 38.
    ÄNGGåRD, E., LARSSON, C. and SAMUELSSON, B. (1971). The distribution of 15-hydroxy prostaglandin dehydrogenase and prostaglandin-Δ13-reductase in tissues of the swine. Acta Physiol. Scand., 81, 396–404.PubMedGoogle Scholar
  39. 39.
    NAKANO, J., PRANCAN, A.V. and MOORE, S.E. (1972). Metabolism of prostaglandin E1 in the cerebral cortex and cerebellum of the dog and rat. Brain Res., 39, 545–548.PubMedGoogle Scholar
  40. 40.
    SIGGINS, G., HOFFER, B. and BLOOM, F. (1971). Prostaglandin-norepinephrine interactions in brain: micro-electrophoretic and histochemical correlates. Ann. N.Y. Acad. Sci., 180, 302–323.PubMedGoogle Scholar
  41. 41.
    RAMWELL, P.W. (1964). The action of cerebrospinal fluid on the frog rectus abdominis muscle and other isolated tissue preparations. J. Physiol. (London), 170, 21–38.Google Scholar
  42. 42.
    FELDBERG, W. and GUPTA, K.P. (1972). Pyrogen fever and prostaglandin-1ike activity in cerebrospinal fluid. J. Physiol. (London), 228, 41–53.Google Scholar
  43. 43.
    FELDBERG, W., GUPTA, K.P., MILTON, A.S. and WENDLandT, S. (1972). Effect of bacterial pyrogen and antipyretics on prostaglandin activity in cerebro-spinal fluid of unanaesthetized cats. Br. J. Pharmacol., 46, 550–551P.Google Scholar
  44. 44.
    MILTON, A.S. (1973). Prostaglandin E1 and endotoxin fever, and the effect of aspirin, indomethacin, and 4-acetamidophenol. In: Advances in Biosciences, Ed. S. Bergström, Pergamon Press, Oxford, England, vol. 9, pp. 495–500.Google Scholar
  45. 45.
    LATORRE, E., PATRONO, C., FORTUNA, A. and GROSSI-BELLONI, D. (1974). Role of prostaglandin F in human cerebral vasospasm. J. Neurosurg., 41, 293–299.Google Scholar
  46. 46.
    BITO, L.Z. (1972). Accumulation and apparent active transport of prostaglandins by some rabbit tissues in vitro. J. Physiol., 221, 371–387.PubMedGoogle Scholar
  47. 47.
    BITO, L.Z. (1975). Are prostaglandins intracellular, transcellular or extracellular autacoids? Prostaglandins, 9, 851–855.PubMedGoogle Scholar
  48. 48.
    BITO, L.Z. and BAROODY, R. (1974). Concentrative accumulation of 3H-prostaglandins by some rabbit tissues in vitro: the chemical nature of the accumulated 3H-labelled substances. Prostaglandins, 7, 131–140.PubMedGoogle Scholar
  49. 49.
    BITO, L.Z., DAVSON, H. and SALVADOR, E.V. (1976). Inhibition of in vitro concentrative prostaglandin accumulation by prostaglandin analogues and by some inhibitors of organic anion transport. J. Physiol., 256, 257–271.PubMedGoogle Scholar
  50. 50.
    BITO, L.Z., DAVSON, H. and HOLLINGSWORTH, J.R. (1976). Facilitated transport of prostaglandins across the blood-cerebrospinal fluid and blood-brain barriers. J. Physiol., 253, 273–285.Google Scholar
  51. 51.
    HORTON, E.W. (1964). Actions of Prostaglandins E1, E2 and E3 on the central nervous system. Br. J. Pharmac., 22, 189–192.Google Scholar
  52. 52.
    NISTICO’, G. and MARLEY, E. (1973). Central effects of Prostaglandin E1 in adult fowls. Neuropharmacology, 12, 1009–1016.Google Scholar
  53. 53.
    HAUBRICH, D.R., PEREZ-CRUET, J. and REID, W.D. (1973). Prostaglandin E1 causes sedation and increases 5-hydroxytryptamine turnover in rat brain. Br. J. Pharmac., 48, 80–87.Google Scholar
  54. 54.
    POTTS, W.J. and EAST, P.F. (1971). The effect of Prostaglandin E2 on conditioned avoidance response performance in rats. Arch. Int. Pharmacodyn., 191, 74–79.PubMedGoogle Scholar
  55. 55.
    YAMAMOTO, Y.L., FEINDEL, W., WOLFE, L.S., KATOH, H. and HODGE, C.P. (1972). Experimental vasoconstriction of cerebral arteries by Prostaglandins. Neurosurg., 37, 385–397.Google Scholar
  56. 56.
    FERREIRA, S.H. and VANE, J.R. (1967). Prostaglandins: their disappearance from and release into the circulation. Nature (Lond.), 216, 868–873.Google Scholar
  57. 57.
    HOLMES, S.W. and HORTON, E.W. (1968). The distribution of tritium labelled Prostaglandin E1 injected in amounts sufficient to produce central nervous effects in cats and chicks. Br. J. Pharmac., 34, 32–37.Google Scholar
  58. 58.
    HORTON, E.W. and MAIN, I.H.M. (1965). Differences in the effects of Prostaglandin F, a constituent of cerebral tissue, and Prostaglandin E1, on conscious cats and chicks. Int. J. Neuropharmac., 4, 65–69.Google Scholar
  59. 59.
    HORTON, E.W. and MAIN, I.H.M. (1967). Fu7ther observations on the central nervous actions of Prostaglandins F and E1. Br. J. Pharmacol., 30, 568–581.Google Scholar
  60. 60.
    DAUGHERTY, S.H., MARRAZZI, M.A. and MARRAZZI, A.S. (1974). The effects of Prostaglandin on cerebral cortical evoked potentials. Fed. Proc., 33, 286–293.Google Scholar
  61. 61.
    HORTON, E.W. (1976). Prostaglandins-mediators, modulators or metabolites? J. Pharm. Pharmac. 28, 389–392.Google Scholar
  62. 62.
    DURU, S. and TÜRKER, R.K. (1969). Effect of Prostaglandin E1 on the strychnine induced convulsion in the mouse. Experientia, 25, 275.PubMedGoogle Scholar
  63. 63.
    GOLDBERG, N.D., HADDOX, N.K., HARTLE, D.K. and HADDEN, J.W. (1972). The biological role of cyclic 3′5′ guanosine monophosphate. In: Pharmacology and future of man, Proc. 5th Intern. Congr. Pharmacology, San Francisco, Calif. vol. 5, Cellular Mechanisms, Karger, pp. 146–169.Google Scholar
  64. 64.
    FOLCO, G.C., LONGIAVE, D., BERTI, F., FUMAGALLI, R. and PAOLETTI, R. (1976). Prostaglandin E2 and central cyclic nucleotides. In: Advances in Prostaglandins and Thromboxane Research, vol. 1, Eds. Samuelsson B. and Paoletti R., Raven Press, New York, pp. 305–312.Google Scholar
  65. 65.
    SATTIN, A. (1971). Increase in the content of adenosine 3′-5′-monophosphate in mouse forebrain during seizures and prevention of the increase by methyl-xanthines. J. Neurochem., 18, 1087–1096.PubMedGoogle Scholar
  66. 66.
    LLINAS, R. and VOLKIND, R.A. (1972). The olivo cerebellar system: functional properties as revealed by harmaline induced tremor. Exp. Brain Res., 18, 69–87.Google Scholar
  67. 67.
    LLINAS, R. and VOLKIND, R.A. (1972). Repetitive climbing fiber activation of Purkinje cells in the cat cerebellum following administration of harmaline. Fed. Proc., 31, 377.Google Scholar
  68. 68.
    MAO, C.C., GUIDOTTI, A. and COSTA, E. (1975). Inhibition by diazepam of the tremor and the increase of cerebellar cGMP content elicited by harmaline. Brain Res., 83, 516–519.PubMedGoogle Scholar
  69. 69.
    HENDERSON, G.L. and WOOLLEY, D.E. (1970). Ontogenesis of drug-induced tremor in the rat. J. Pharmacol. Exptl. Ther. 175, 113–120.Google Scholar
  70. 70.
    SPANO, P.F., KUMAKURA, K., GOVONI, S. and TRABUCCHI, M. (1975). Postnatal development and regulation of cerebellar cyclic guanosine monophosphate system. Pharmacol. Res. Comm., 7, n. 3, 223–237.Google Scholar
  71. 71.
    MAO, C.C., GUIDOTTI, A. and COSTA, E. (1974). The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino-acid neurotransmitters. Brain Res., 79, 510–514.PubMedGoogle Scholar
  72. 72.
    YANG, A.B., OSTER-GRANITE, M.L., HERNDON, R.M. and SNYDER, S.H. (1974). Glutamic acid: selective depletion by viral induced granule cell loss in Hamster cerebellum. Brain Res., 73, 1–13.Google Scholar
  73. 73.
    FERRENDELLI, J.A., CHANG, M.M. and KINSCHERF, D.A. (1974). Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino-acids. J. Neurochem., 22, 535–540.PubMedGoogle Scholar
  74. 74.
    QUESNEY, L.F., GLOOR, P., WOLFE, L.S. and JOZSEF, S. (1976). Effect of PGF and 15(5)-15-methyl PGE2 methyl esther on feline generalized penicillin epilepsy. In: Advances in Prostaglandins and Thromboxane Research, vol. 2, Ed. Samuelsson B. and Paoletti R., Raven Press, New York, pp. 387–390.Google Scholar
  75. 75.
    ZATZ, M. and ROTH, R.H. (1975). Electroconvulsive shock raises prostaglandins F in rat cerebral cortex. Biochem. Pharmacol., 24, 2101–2103.PubMedGoogle Scholar
  76. 76.
    PIPER, P. and VANE, J. (1971). The release of Prostaglandins from lung and other tissues. Ann. N.Y. Acad. Sci., 180, 363–385.PubMedGoogle Scholar
  77. 77.
    LYNEHAM, R.C., MCLEOD, J.G., SMITH, I.D., LOW, P.A., SHEARMAN, R.P. and KORDA, A.R. (1973). Convulsions and electroencephalogram abnormalities after intraamniotic prostaglandin F. Lancet, ii, 1003–1005.Google Scholar
  78. 78.
    CRAFT, J. (1973). Prostaglandins and convulsions. Lancet, ii, 1389.Google Scholar
  79. 79.
    THIERY, M., AMY, J.J., DE HEMPTINNE, D. and YO LE SIAN (1974). Lancet, i, 918.Google Scholar
  80. 80.
    COCEANI, F. and VITI, A. (1973). Actions of Prostaglandin E1 on spinal neurones in the frog. Adv. Biosci., 9, 481–487.Google Scholar
  81. 81.
    DUDA, P., HORTON, E.W. and MCPHERSON, A. (1968). The effects of Prostaglandins E1, F and F on monosynaptic reflexes. J. Physiol., 196, 151–162.PubMedGoogle Scholar
  82. 82.
    HORTON, E.W. and MAIN, I.H.M. (1969). Actions of Prostaglandin E1 on spinal reflexes in the cat. In: Prostaglandins peptides and amines, Ed. Mantegazza P. and Horton E.W., Academic Press, London, pp. 121–122.Google Scholar
  83. 83.
    SCARAMUZZI, O.E., BAILE, C.A. and MAJER, J. (1971). Prostaglandins and food intake of rats. Experientia, 27, 256–257.PubMedGoogle Scholar
  84. 84.
    BAILE, C.A., BEAN, S.M., SIMPSON, C.W. and JACOBS, H.L. (1971). Feeding effects of hypothalamic injections of prostaglandins. Fed. Proc., 30, 375.Google Scholar
  85. 85.
    BAILE, C.A., SIMPSON, C.W., BEAN, S. M., MCLAUGHLIN, C.L. and JACOBS, H.L. (1973). Prostaglandins and food intake of rats: a component of energy balance regulation? Physiol. Behav., 10, 1077–1086.PubMedGoogle Scholar
  86. 86.
    MARTIN, F.H. and BAILE, C.A. (1973). Feeding elicited in sheep by intrahypothalamic injections of PGE1. Experientia, 29, 306–307.PubMedGoogle Scholar
  87. 87.
    WHISHAW, I.Q. and VEALE, W.L. (1974). Comparison of the effect of Prostaglandin E1 and Norepinephrine injected into the brain on ingestive behavior in the rat. Pharmacol. Biochem. Behavior, 2, 421–425.Google Scholar
  88. 88.
    KRAGT, C.L. and BERGSTROM, K.K. (1975). Interactions of Prostaglandin E1 (PGE1) and LRH on anterior pituitary function. Prostaglandins 10, 833–851.PubMedGoogle Scholar
  89. 89.
    MACLEOD, R. and LEHMEYER, J.E. (1970). Release of pituitary growth hormone by Prostaglandins and dibutyryl Adenosine cyclic 3-5′ monophosphate in the absence of protein synthesis. Proc. Natl. Acad. Sci. U.S.A., 67, 1172–1179.PubMedGoogle Scholar
  90. 90.
    RATNER, A., WILSON, M.C. and PEAKE, G.T. (1973). Antagonism of prostaglandin-promoted pituitary cyclic AMP accumulation and growth hormone secretion in vitro by 7-OXA-13-Prostynoic acid. Prostaglandins, 3, 413–418.PubMedGoogle Scholar
  91. 91.
    DE WIED, D., WITTER, A., VERSTEEG, D.H.G. and MULDER, A.H. (1969). Release of ACTH by substances of central nervous system origin. Endocrinology, 85, 561–569.PubMedGoogle Scholar
  92. 92.
    PENG, T.C., SIX, K.M. and MUNSON, P.L. (l970). Effects of Prostaglandin E1 on the hypothalamo-hypophyseal-adrenocortical Axis in rats. Endocrinology, 86, 202–206.Google Scholar
  93. 93.
    HEDGE, G.A. and HANSON, S.D. (1972). The effects of Prostaglandins on ACTH Secretion. Endocrinology, 91, 925–933.PubMedGoogle Scholar
  94. 94.
    LABHSETWAR, A.P. (1973). Neuroendocrine basis of ovulation in hamsters treated with Prostaglandin F. Endocrinology, 92, 606–610.PubMedGoogle Scholar
  95. 95.
    RATNER, A., WILSON, M.C., SRIVASTAVA, L. and PEAKE, G.T. (1974). Stimulatory effects of prostaglandin E1 on rat anterior pituitary cyclic AMP and luteinizing hormone release. Prostaglandins, 5, n. 2, 165–170.Google Scholar
  96. 96.
    SATO, T., HIRONO, M., JYUJO, T., IESAKA, T., TAYA, K. and IGARASHI, M. (1975). Direct action of Prostaglandins on the rat pituitary. Endocrinology, 96, 45–49.PubMedGoogle Scholar
  97. 97.
    HARMS, P.G., OJEDA, S.R. and MCCANN, S.M. (1974). Prostaglandin-induced release of pituitary gonadotropins: Central Nervous System and pituitary sites of action. Endocrinology, 84, 1459–1464.Google Scholar
  98. 98.
    SATO, T., JYUJO, T. IESAKA, T., ISHIKAWA, J. and IGARASHI, M. (1974). Follicle stimulating hormone and prolactin release induced by prostaglandins in rat. Prostaglandins, 5, n. 5, 483–490.PubMedGoogle Scholar
  99. 99.
    OJEDA, S.R., HARMS, P.G. and MCCANN, S.M. (1974). Central effect of Prostaglandin E1 (PGE-) on Prolactin release. Endocrinology, 85, 613–618.Google Scholar
  100. 100.
    BROWN, M.R. and HEDGE, G.A. (1974). In vivo effects of prostaglandins on TRH-induced TSH secretion. Endocrinology, 85, 1392–1397.Google Scholar
  101. 101.
    BATTA, S., FIORINDO, R.P., JUSTO, G., MOTTA, M., SIMONOVIC, I., ZANISI, M. and MARTINI, L. (1974). Role of cholinergic mechanism and of Prostaglandins in the control of LH and FSH secretion. In: Neuroendocrine control of fertility, Int. Symp., Simla, Ed. Anand Kumar T.C., pp. 155–168.Google Scholar
  102. 102.
    DROUIN, J. and LABRIE, F. (1976). Specificity of the stimulatory effect of prostaglandins on hormone release in rat anterior pituitary cells in culture. Prostaglandins, 11, 355–364.PubMedGoogle Scholar
  103. 103.
    HEDGE, G.A. (1976). Hypothalamic and pituitary effects of prostaglandins on ACTH secretion. Prostaglandins, 11, 293–301.PubMedGoogle Scholar
  104. 104.
    DROUIN, J., FERLand, L., BERNARD, J. and LABRIE, F. (1976). Site of the in vivo stimulatory effect of Prostaglandins on LH release. Prostaglandins, 11, 367–375.PubMedGoogle Scholar
  105. 105.
    SATO, T., JYUJO, T., HIRONO, M. and IESAKA, T. (1975). Effects of Indomethacin, an inhibitor of prostaglandin synthesis, on the hypothalamic-pituitary system in rats. J. Endocr. 64, 395–396.PubMedGoogle Scholar
  106. 106.
    THOMPSON, M.E. and HEDGE, G.A. (1976). Suppression of Thyrotropic hormone secretion by prostaglandin synthesis inhibitors. Endocrinology, 98, n. 3, 787–793.PubMedGoogle Scholar
  107. 107.
    BORGEAT, P., LABRIE, F. and GARNEAU, P. (1975). Characteristics of action of prostaglandins on cyclic AMP accumulation in rat anterior pituitary gland. Can. J. Biochem., 53, 455.PubMedGoogle Scholar
  108. 108.
    ZOR, U., KANEKO, T., SCHNEIDER, H.P.G., MCCANN, S.M., LOWE, I.P., BLOOM, S., BORLand, B. and FIELD, J.B. (1969). Stimulation of anterior pituitary adenyl cyclase activity and adenosine 3′-5′ cyclic phosphate by hypothalamic extract and prostaglandin E1. Proc. Nat. Acad. Sci., 63, 918–925.PubMedGoogle Scholar
  109. 109.
    BORGEAT, P., LABRIE, F., DROUIN, J., BELANGER, A., IMMER, H., SESTANJ, K., NELSON, V., GOTZ, M., SCHALLY, A.V., COY, D.H. and COY, E.J. (1971). Inhibition of adenosine 3′-5′ monophosphate accumulation in anterior pituitary gland in vitro by growth hormone-release inhibiting hormone. Biochem. Biophys. Res. Comm., 56, 1052–1059.Google Scholar
  110. 110.
    BORGEAT, P., CHAVANCY, G., DUPONT, A., LABRIE, F., ARIMURA, A. and SCHALLY, A.V. (1972). Stimulation of adenosine 3′-5′ monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing-hormone/follicle stimulating hormone-releasing hormone (LH-RH/FSH-RH). Proc. Natl. Acad. Sci. U.S.A., 69, 2677–2681.PubMedGoogle Scholar
  111. 111.
    KANEKO, T., SAITO, S., OKA, H., ODA, T. and YANAIHARA, N. (1973). Effects of synthetic LH-RH and its analogs on rat anterior pituitary cyclic AMP and LH and FSH release. Metabolism, 22, 77–78.PubMedGoogle Scholar
  112. 112.
    MAKINO, T. (1973). Study on the intracellular mechanism of LH release in the anterior pituitary gland. Am. J. Obstet. Gynaecol., 115, 606–614.Google Scholar
  113. 113.
    BORGEAT, P., LABRIE, F., COTE, J., RUEL, F., SCHALLY, A.V., COY, D.H., COY, E.J. and YANAIHARA, N. (1974). Parallel stimulation of cyclic AMP accumulation and LH and FSH release by analogs of LH-RH in vitro. J. Mol. Cell Endocrinol., 1, 7–20.Google Scholar
  114. 114.
    RATNER, A. (1970). Stimulation of luteinizing hormone release in vitro by dibutyryl-cyclic AMP and theophylline. Life Sci., 9, 1221–1226.Google Scholar
  115. 115.
    STEINER, A.L., PEAKE, G.T., UTIGER, R.D., KARL, I.E. and KIPNIS, D.M. (1970). Hypothalamic stimulation of growth hormone and thyreotropin release in vitro and pituitary 3′-5′ adenosine cyclic monophosphate. Endocr., 86, 1354–1360.Google Scholar
  116. 116.
    TAL, E., SZABO, M. and BURKE, G. (1974). TRH and prostaglandin action on rat anterior pituitary: dissociation between cyclic AMP levels and TSH release. Prostaglandins, 5, n. 2, 175–182.Google Scholar
  117. 117.
    DE WIED, D. and DE JONG, W. (1974). Drug effects and hypothalamic-anterior pituitary function. Ann. Rev. Pharmacol., 14, 389–412.Google Scholar
  118. 118.
    HINMAN, J.W. (1972). Prostaglandins. Ann. Rev. Pharmacol., 41, 161–178.Google Scholar
  119. 119.
    HARMS, P.G., OJEDA, S.R. and MCCANN, S.M. (1976). Failure of monoaminergic and cholinergic receptor blockers to prevent prostaglandin E2-induced luteinizing hormone release. Endocrinology, 98, 318–323.PubMedGoogle Scholar
  120. 120.
    VILHART, H. and HEDQVIST, P. (1970). A possible role of prostaglandin E2 in the regulation of vasopressin secretion in rats. Life Sci., 9, 825–830.Google Scholar
  121. 121.
    COBO, E.C., RODRIGUEZ, A. and VILLAMIZAR, M. (1974). Milk enjecting activity induced by prostaglandin F. Amer. J. Obst. Gynaecol., 118, 831–836.Google Scholar
  122. 122.
    KAPLAN, H.R., GREGA, G.J., SHERMAN, G.P. and BUCKLEY, J.P. (1969). Central and reflexogenic cardiovascular actions of prostaglandins E1. Intern. J. Neuro-pharmacol., 8, 15–24.Google Scholar
  123. 123.
    LAVERY, H.A., LOWE, R.D. and SCROOP, G.C. (1970). Cardiovascular effects of prostaglandins mediated by the central nervous system of the dog. Br. J. Pharmac., 39, 511–519.Google Scholar
  124. 124.
    RINCHUSE, D.J. and DEUBEN, R.R. (1976). Central mediated pressor effect by prostaglandins in the rat. Prostaglandins, 11, n. 3, 523–530.PubMedGoogle Scholar
  125. 125.
    MCQUEEN, D.S. and UNGAR, A. (1969). The modification by Prostaglandin E1 of central nervous interactions between respiratory and cardio-inhibitory pathways. In: Prostaglandins, Peptides and Amides, Eds. Mantegazza P. and Horton E.W., Academic Press, New York, pp. 123–124.Google Scholar
  126. 126.
    CARLSON, L.A., EKELUND, L.G. and ORÖ, L. (1969). Circulatory and respiratory effects of different doses of prostaglandin E., in man. Acta Physiol. Scand., 75, 161–169.PubMedGoogle Scholar
  127. 127.
    COCEANI, F., DREIFUSS, J.J., PUGLISI, L. and WOLFE, L.S. (1969). Prostaglandins and membrane function. In: Prostaglandins, Peptides and Amides, Eds. Mantegazza P. and Horton E.W., Academic Press, New York, pp. 73–84.Google Scholar
  128. 128.
    PENNINK, M., WHITE, R.P., CROCKARELL, J.R. and ROBERTSON, J.T. (1972). Role of prostaglandin F in the genesis of experimental cerebral vasospasm. Angiografic study in dogs. J. Neurosurg., 37, 398–406.PubMedGoogle Scholar
  129. 129.
    DENTON, I.C., WHITE, R.P. and ROBERTSON, J.T. (1972). The effects of prostaglandins E1, A, and F on the cerebral circulation of dogs and monkeys. J. Neurosurg., 36, 34–42.PubMedGoogle Scholar
  130. 130.
    ROSENBLUM, W.I. (1975). Effects of prostaglandins on cerebral blood vessels: interaction with vasoactive amines. Neurology, 25, 1169–1171.PubMedGoogle Scholar
  131. 131.
    WELCH, K.M.A., SPIRA, P.J., KNOWLES, L. and LANCE, J.W. (1974). Effects of prostaglandins on the internal and external carotid blood flow in the monkey. Neurology, 24, 705–710.PubMedGoogle Scholar
  132. 132.
    AVANZINO, G.L., BRADLEY, P.B. and WOLSTENCROFT, J.H. (1966). Actions of Prostaglandins E1, E9 and F on brain stem neurones. Br. J. Pharmac., 27, 157–163.Google Scholar
  133. 133.
    HOFFER, B., SIGGINS, G. and BLOOM, F. (1970). Possible cyclic AMP mediated adrenergic synapse to rat cerebellar Purkinje cells: combined structural physiological and pharmacological analysis. In: Role of cyclic AMP in cell function, Ed. Greengard P. and Costa E., Advances in Biochemical Psychopharmacology, vol. 3, Raven Press, New York, pp. 349–370.Google Scholar
  134. 134.
    SIGGINS, G., HOFFER, B. and BLOOM, F. (1971). Studies on norepinephrine containing afferents to Purkinje cells of rat cerebellum: III. Evidence for mediation of norepinephrine effects by cyclic 3′-5′ adenosine monophosphate. Brain Res., 25, 535–553.PubMedGoogle Scholar
  135. 135.
    POULAIN, P. and CARETTE, B. (1974). Iontophoresis of Prostaglandins on hypothalamic neurones. Brain Res., 79, 311–314.PubMedGoogle Scholar
  136. 136.
    TRABER, J., REISER, G., FISCHER, K. and HAMPRECHT, B. (1975). Measurements of adenosine 3′-5′ monophosphate and membrane potential in neuroblastoma x glioma hybrid cells: opiates and adrenergic agonists cause effects opposite to those of Prostaglandin E. Febs Letters, 52, n. 2, 327–332.Google Scholar
  137. 137.
    WELLMANN, W. and SCHWABE, U. (1973). Effects of prostaglandins E1, E2 and F on cyclic AMP levels in brain in vivo. Brain Res., 59, 371–378.PubMedGoogle Scholar
  138. 138.
    BERTI, F., TRABUCCHI, M., BERNAREGGI, V. and FUMA-GALLI, R. (1972). The effects of prostaglandins on cyclic AMP formation in cerebral cortex of different mammalian species. Pharmac. Res. Comm., 4, 253–259.Google Scholar
  139. 139.
    BERTI, F., TRABUCCHI, M., BERNAREGGI, V. and FUMA-GALLI, R. (1972). Prostaglandins on cyclic AMP formation in cerebral cortex of different mammalian species. Adv. in Biosci., 9, 475–480.Google Scholar
  140. 140.
    GILMAN, A.G. and NIRENBERG, M. (1971). Regulation of adenosine 3′-5′ cyclic monophosphate metabolism in cultured neuroblastoma cells. Nature, 234, 356–358.PubMedGoogle Scholar
  141. 141.
    GILMAN, A.G. and SCHRIER, B.K. (1972). Adenosine cyclic 3′-5′ monophosphate in fetal rat brain cell cultures. I. Effect of cathecolamines. Molecular Pharmacology, 8, 410–416.PubMedGoogle Scholar
  142. 142.
    DISMUKES, K. and DALY, J.W. (1975). Accumulation of adenosine 3′-5′ monophosphate in rat brain slices: effects of prostaglandins. Life Sci., 17, 199–210.PubMedGoogle Scholar
  143. 143.
    FUMAGALLI, R., BERTI, F., FOLCO, G.C. and OMINI, C. unpublished observations.Google Scholar
  144. 144.
    PAOLETTI, R., BERTI, F., FUMAGALLI, R. and FOLCO, G.C. (1974). Some interrelations between prostaglandins and cyclic nucleotides. In: Future Trends in Inflammation, Eds. Velo G.P., Willoughby D.A. and Giroud J.P., Piccin Medical Books, pp. 11–18.Google Scholar
  145. 145.
    PERKINS, J.P. (1973). Adenyl Cyclase. Adv. Cyclic Nucl. Res., 3, 2–64.Google Scholar
  146. 146.
    GILMAN, A.G. and NIRENBERG, H. (1971). Effect of catecholamines on the adenosine 3′-5′ cyclic monophosphate concentrations of clonal satellite cells of neurons. Proc. Nat. Acad. Sci. U.S.A., 68, 2165–2168.Google Scholar
  147. 147.
    SAHU, S.K. and PRASAD, K.N. (1975). Effect of neurotransmitters and prostaglandin E1 on cyclic AMP levels in various clones of neuroblastoma cells in culture. J. Neurochem., 24, 1267–1269.PubMedGoogle Scholar
  148. 148.
    GILMAN, A.G. (1972). Regulation of cyclic AMP metabolism in cultured cells of the nervous system. Adv. Cyclic Nucl. Res., 1, 389–410.Google Scholar
  149. 149.
    RYAN, W.L. and HEIDRICK, M.L. (1968). Inhibition of cell growth in vitro by adenosine 3′-5′ monophosphate. Science, 162, 1484–1485.PubMedGoogle Scholar
  150. 150.
    HEIDRICK, M.L. and RYAN, W.L. (1970). Cyclic nucleotides on cell growth in vitro. Cancer Res., 30, 376–378.PubMedGoogle Scholar
  151. 151.
    PASTAN, I., JOHNSON, G.S., OTTEN, J., PEERY, C.V. and D’ARMIENTO, M. (1971). Role of cyclic AMP in the abnormal growth and morphology of transformed fibroblasts. Fed. Proc, 30, 1047.Google Scholar
  152. 152.
    PRASAD, K.N. and HSIE, A.W. (1971). Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′-5′ cyclic monophosphate. Nature New Biology, 233, 141–142.PubMedGoogle Scholar
  153. 153.
    PRASAD, K.N. (1972). Morphological differentiation induced by Prostaglandin in mouse neuroblastoma cells in culture. Nature New Biology, 236, 49–52.PubMedGoogle Scholar
  154. 154.
    ADOLPHE, M., GIROUD, J.P., TIMSIT, J., FONTAGNE, J. and LECHAT, P. (1974). Action de la Prostaglandine A2 sur la proliferation et la differenciation morphologique d’une lignée cellulaire de neuroblastome murin. Compte. Rendus Seances Soc. Biologie, 168, 694–698.Google Scholar
  155. 155.
    EDSTRÖM, A., KANJE, M. and VALUM, E. (1974). Effects of dibutyryl cyclic AMP and prostaglandin E1 on cultured human glioma cells. Exp. Cell Res., 85, 217–223.PubMedGoogle Scholar
  156. 156.
    THOMAS, D.R., PHILPOTT, G.W. and JAFFE, B.M. (1974). The relationship between concentration of prostaglandin E and rates of cell replications. Exp. Cell Res., 84, 40–46.PubMedGoogle Scholar
  157. 157.
    HAMMARSTRÖM, S., SAMUELSSON, B. and BJURSELL, G. (1973). Prostaglandin levels in normal and transformed baby-hamster-kidney fibroblasts. Nature New Biol., 243, 50–51.PubMedGoogle Scholar
  158. 158.
    LEICHTLING, B.H., DROTAR, A.M., ORTMANN, R. and PERKINS, J.P. (1976). Growth of astrocytoma cells in the presence of prostaglandin E1: effect on the regulation of cyclic AMP metabolism. J. Cyclic Nucl. Res., 2, 89–98.Google Scholar
  159. 159.
    MAGANIELLO, V. and VAUGHAN, M. (1972). Prostaglandin E. effects on adenosine 3′-5′ cyclic monophosphate concentration and phosphodiesterase activity in fibroblasts. Proc. Nat. Acad. Sci. U.S.A., 69, 269–273.Google Scholar
  160. 160.
    JAFFE, B.M. (1974). Prostaglandins and cancer: un update. Prostaglandins, 6, 453–461.PubMedGoogle Scholar
  161. 161.
    CHLAPOWSKI, F.J., KELLY, L.A. and BUTCHER, R.W. (1976). Cyclic nucleotides in cultured cells. Adv. Cyclic Nucl. Res., 6, 245–338.Google Scholar
  162. 162.
    MCMANUS, J.P. and WHITFIELD, J.F. (1975). Cyclic AMP, prostaglandins, and the control of cell proliferation. Prostaglandins, 6, 245–338.Google Scholar
  163. 163.
    JACOBSON, H.I. (1974). Oncolytic action of Prostaglandins. Cancer Chemotherapy Reports, Part 1, 58, 503–511.Google Scholar
  164. 164.
    STEIN-WERBLOWSKY, R. (1974). The effect of prostaglandins on tumor implantation. Experientia, 30, 957–959.PubMedGoogle Scholar
  165. 165.
    EISENBARTH, G.S., WELLMAN, D.K. and LEBOVITZ, H.E. (1974). Prostaglandin A1 inhibition of chondrosarcoma growth. Biochem. B-iophys. Res. Comm., 60, 1302–1308.Google Scholar
  166. 166.
    COLLIER, H.O.J, and ROY, A.C. (1974). Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate. Nature, 248, 24–27.PubMedGoogle Scholar
  167. 167.
    TRABER, J., FISCHER, K., LATZIN, S. and HAMPRECHT, B. (1975). Morphine antagonizes action of prostaglandin in neuroblastoma and neuroblastoma x glioma hybrid cell. Nature, 253, 120–122.PubMedGoogle Scholar
  168. 168.
    TRABER, J., FISCHER, K., LATZIN, S. and HAMPRECHT, B. (1974). Morphine antagonizes the action of prostaglandin in neuroblastoma cells but not of prostaglandin and noradrenaline in glioma and glioma x fibroblast hybrid cells. Febs Letters, 49, 260–263.PubMedGoogle Scholar
  169. 169.
    TRABER, J., FISCHER, K., BUCHEN, C. and HAMPRECHT, B. (1975). Muscarinic response to acetylcholine in neuroblastoma x glioma hybrid cells. Nature, 255, 558–560.PubMedGoogle Scholar
  170. 170.
    TRABER, J. and HAMPRECHT, B. (1976). Action of neurohormones and opiates on neuroblastoma x glioma hybrid cells in culture. In: Advances in Prostaglandin and Thromboxane Research, vol. 1, Eds. Samuelsson B. and Paoletti R., Raven Press, New York, pp. 337–340.Google Scholar
  171. 171.
    IVERSEN, L. and DINGLEDINE, R. (1976). Enkephalin: the latest instalment. Nature, 262, 738–739.Google Scholar
  172. 172.
    COLLIER, H.O.J, and ROY, A.C. (1974). Hypothesis inhibition of E prostaglandin-sensitive adenyl cyclase as the mechanism of morphine analgesia. Prostaglandins, 7, 361–376.PubMedGoogle Scholar
  173. 173.
    COLLIER, H.O.J., MCDONALD-GIBSON, W.J. and SAEED, S.A. (1974). Apomorphine and morphine stimulate prostaglandin biosynthesis. Nature, 252, 56–58.PubMedGoogle Scholar
  174. 174.
    ROY, A.C. and COLLIER, H.O.J. (1975). Prostaglandins, cyclic AMP and the biochemical mechanism of opiate agonist action. Life Sci., 16, 1857–1862.PubMedGoogle Scholar
  175. 175.
    COLLIER, H.O.C., FRANCIS, D.L., MCDONALD-GIBSON, W.J., ROY, A.C. and SAEED, S.A. (1975). Prostaglandins, cyclic AMP and the mechanism of opiate dependence. Life Sci., 17, 85–90.PubMedGoogle Scholar
  176. 176.
    FERRI, S., SANTAGOSTINO, A., BRAGA, P.C. and GALA-TULAS, I. (1974). Decreased antinociceptive effect of morphine in rats treated intraventricularly with Prostaglandin E1. Psychopharmacologia (Berlin) 39, 231–235.Google Scholar
  177. 177.
    BHATTACHARYA, S.K., REDDY, P.K.S.P., DEBNATH, P.K. and SANYAL, A.K. (1975). Potentiation of antinociceptive action of morphine by prostaglandin E1 in albino rats. Clin. Exp. Pharmacol. Physiol., 2, 353–357.PubMedGoogle Scholar
  178. 178.
    MALMSTEN, C., GRANSTRÖM, E. and SAMUELSSON, B. (1976). Cyclic AMP inhibits synthesis of prostaglandins endoperoxide (PGG2) in human platelets. Biochem. Biophys. Res. Comm., 68, n. 2, 569–576.PubMedGoogle Scholar
  179. 179.
    BERGSTROM, S., FARNEBO, L.A. and FUXE, K. (1973). Effect of prostaglandin E2 on central and peripheral catecholamine neurones. Eur. J. Pharmacol., 21, 362–368.PubMedGoogle Scholar
  180. 180.
    HEDQVIST, P. (1973). Autonomic neurotransmission. In: The Prostaglandins, vol. 1, Ed. Ramwell P.W., Plenum Press, New York, pp. 101–131.Google Scholar
  181. 181.
    DUBOCOVICH, M.L. and LANGER, S.Z. (1975). Evidence against a physiological role of prostaglandins in the regulation of Noradrenaline release in the cat spleen. J. Physiol., 251, 737–762.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • R. Fumagalli
    • 1
  • G. C. Folco
    • 1
  • D. Longiave
    • 1
  1. 1.Institute of Pharmacology and PharmacognosyUniversity of MilanoMilanoItaly

Personalised recommendations