Advertisement

Structure of Chloroplast DNA

  • K. K. Tewari
  • R. Kolodner
  • Nathan M. Chu
  • Robert R. Meeker
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 12)

Abstract

We had previously reported the isolation of circular chloro-plast (et) DNA molecules from pea leaves. Circular pea ctDNA was found to have a molecular weight of 90×106 with no evidence of inter- or intramolecular heterogeneity. Recently we have extensively studied the size and structure of ctDNAs from pea, bean, spinach, lettuce, corn, and oats.2 As much as 89% of the ctDNAs from these higher plants has been obtained in circular form. The DNA preparations were also found to contain circular and catenated dimers of the circular monomer. The molecular sizes of these circular ctDNA molecules relative to internal standards has been found to range from 85×106 to 97×106. The molecular size of these ctDNAs was also determined by renaturation kinetics and found to range from 82x106 to 93×106. The excellent agreement between the molecular weights of these circular DNA molecules obtained by electron microscopy and the molecular weight of the unique sequences of these ctDNAs determined by renaturation kinetics suggests that the sequence of a circular ctDNA molecule represents the entire information content of the ctDNA.

Keywords

Circular Molecule Alkali Labile Site Open Circular Form CsCl Density Gradient Denature Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kolodner, R. and Tewari, K. K. (1972) .J. Biol. Chem., 247, 6355.PubMedGoogle Scholar
  2. 2.
    Kolodner, R. and Tewari, K. K. (1975) Biochim. Biophys. Acta, 402, 372.Google Scholar
  3. 3.
    Kolodner, R., Tewari, K. K. and Warner, R. C. (1976) Biochim. Biophys. Acta (in press).Google Scholar
  4. 4.
    Kolodner, R. and Tewari, K. K. (1975) J. Biol. Chem. 250, 4888.PubMedGoogle Scholar
  5. 5.
    Kolodner, R. and Tewari, K. K. (1975) J. Biol. Chem. 250, 7020.PubMedGoogle Scholar
  6. 6.
    Tewari, K. K. and Wildman, S. G. (1968) Proc. Nat. Acad. Sci., USA.Google Scholar
  7. 7.
    Thomas, J. R. and Tewari, K. K. (1974) Biochim. Biophys. Acta 361, 73.PubMedGoogle Scholar
  8. 8.
    Thomas, J. R. and Tewari, K. K. (1974) Proc. Nat. Acad. Sci. 71, 3147.PubMedCrossRefGoogle Scholar
  9. 9.
    Meeker, R., Thomas, J. R., and Tewari, K. K. (1976) Plant Physiol. in press.Google Scholar
  10. 10.
    Tewari, K. K. (1971) Ann. Rev. Plant Physiol. _22, 141.CrossRefGoogle Scholar
  11. 11.
    Kolodner, R., Warner, R. C. and Tewari, K. K. (1975) J. Biol. Chem. 250, 7020.PubMedGoogle Scholar
  12. 12.
    Kolodner, R. and Tewari, K. K. (1975) Nature 256, 708.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • K. K. Tewari
    • 1
  • R. Kolodner
    • 1
  • Nathan M. Chu
    • 1
  • Robert R. Meeker
    • 1
  1. 1.Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations