The Control of Plant Growth by Protein Kinases

  • A. Trewavas
  • B. R. Stratton
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 12)


A substantial majority of animal hormones have their biological effects mediated by theadenyl cyclase system (1)0 Until Kuo and Greengard (2) produced their unifying theory it was not clear how cyclic AMP initiated the subsequent molecular events associated with hormone action. Their theory (2.) proposed that the effects of cyclic AMP were mediated by cyclic AMP-dependent protein kinases in the responsive tissue. Since it is the catalytic function of protein kinases to phosphorylate proteins, this theory places our understanding of hormone action firmly on knowing which cellular proteins are phosphorylated. The list of known phosphorylated protein is very extensive and covers proteins in all of the major cellular groups (3). Evidence that phosphorylation (or dephos-phorylation) modifies the biological activity of the phosphorylated protein has however only been critically demonstrated in a few cases (3). Despite the apparent absence of cyclic AMP in plants, this field of research offers such considerable promise for dissecting out the regulatory systems of plants that its study can hardly be avoided.


Abscisic Acid Mineral Salt Medium DEAE Cellulose Chromatin Protein Barley Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jost, J. P. and Rickenberg, H. V. 1971. Ann. Rev. Biochem. 40: 741.CrossRefGoogle Scholar
  2. 2.
    Kuo, J. F. and Greengard, P. 1969. Proc. Nat. Acad. Sci. U.S. 64: 1349.CrossRefGoogle Scholar
  3. 3.
    Trewavas, A. J. 1976. Ann. Rev. Plant Physiol. (in press)Google Scholar
  4. 4.
    Trewavas, A. J. 1973. Plant Physiol. 51: 760.PubMedCrossRefGoogle Scholar
  5. 5.
    Gressner, A. M. and Wool, I. G. 1974. J. Biol. Chem. 249: 6917.PubMedGoogle Scholar
  6. 6.
    Keates, R. A. B. and Trewavas, A. S. 1974. Plant Physiol. 54: 95.PubMedCrossRefGoogle Scholar
  7. 7.
    Bradbury, E. M., Inglis, R. J., Matthews, H. R. and Langan, T. A. 1974. Nature 249: 553.PubMedCrossRefGoogle Scholar
  8. 8.
    Lake, R. G. 1973. Nature 242: 1 45.Google Scholar
  9. 9.
    Yeoman, M. M., and Evans, P. K. 1967. Ann. Bot. 31: 323.Google Scholar
  10. 10.
    Langan, T. A. and Hohmann, P. 1974. Fed. Proc. 33: 1597.Google Scholar
  11. 11.
    Smith, D. L., Bruegger, B. B., Halpern, R. M. and Smith, R. A. 1973. Nature 246: 103.PubMedCrossRefGoogle Scholar
  12. 12.
    Trewavas, A. J. 1970. Plant Physiol. 45: 742.PubMedCrossRefGoogle Scholar
  13. 13.
    Balhorn, R., Chalkley, R. and Granner, D. 1972. Biochemistry 11: 1094.PubMedCrossRefGoogle Scholar
  14. 14.
    Usciati, M., Coddaccioni, M. and Guern, J. 1972. J. Exptl. Bot. 23: 1009.CrossRefGoogle Scholar
  15. 15.
    Blakeley, L. Personal communication.Google Scholar
  16. 16.
    Van Loon, L. C., Trewavas, A. and Chapman, K. S. R. 1975. Plant Physiol. 55: 288.PubMedCrossRefGoogle Scholar
  17. 17.
    Chapman, K. S. R., Trewavas, A. and Van Loon, L. C. 1975. Plant Physiol. 55: 293.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Farrell, P. 1975. J. Biol. Chem. 250: 4007.PubMedGoogle Scholar
  19. 19.
    Trewavas, A. J. 1976 Phytochem. 15: 363.CrossRefGoogle Scholar
  20. 20.
    Panyim, S. and Chackley, R. 1969. Arch. Biochem. Biophys. 130: 337.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. Trewavas
    • 1
  • B. R. Stratton
    • 1
  1. 1.Department of BotanyUniversity of EdinburghEdinburghUK

Personalised recommendations