Cell Surface Membranes of Animal Cells as the Sites of Recognition of Infectious Agents and other Substances

  • Colin Hughes
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 10)


Contacts between the cell surface and extracellular substances such as peptide hormones or antigens are of prime importance in the activation of target cells and the triggering of a defined biological response, for example antibody production in sensitized lymphocytes. Similar contacts are important in intercellular communication and play an integral role in the complex differentiative processes associated with embryogenesis and tissue reorganization. The cell surface must display a large variety of complementary sites that are recognized by other cells and by biologically active effector substances.


Sialic Acid Cholera Toxin Carbohydrate Chain Sialic Acid Residue Fibre Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BANG, F.B. (1972). Specificity of viruses for tissues and hosts. In:Microbial pathogenicity in wan and animals. (Smith, H. and Pearce, J.H., Eds.). 22nd Symp. Soc. Gen. Microbiol., 415–419.Google Scholar
  2. 2.
    BENNET, V., O’KEEFE, E. and CUATRECASAS, P. (1975). Mechanism of action of cholera toxin and the mobile receptor theory of hormone-receptor-adenylate cyclase interactions. Proc. natn. Acad. Sci. U.S.A., 72, 33–37.CrossRefGoogle Scholar
  3. 3.
    BOULANGER, P.A., HOUDRET, N., SHARFMAN, A. and LEMAY, P. (1972). The role of sialic acid in adenovirus adsorption. J. gen. Virol., 16, 429–434.PubMedCrossRefGoogle Scholar
  4. 4.
    BUTTERS, T.D. and HUGHES, R.C. (1975). Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes. Biochem. J., 140, 469–478.Google Scholar
  5. 5.
    BUTTERS, T.D. and HUGHES, R.C. Unpublished results.Google Scholar
  6. 6.
    CUATRECASAS, P. (1973). Interaction of Vibrio cholerae enterotoxin with cell membranes. Biochemistry, N.Y., 12, 3547–3558.CrossRefGoogle Scholar
  7. 7.
    CUATRECASAS, P. (1973). Gangliosides and membrane receptors for cholera toxin. Biochemistry, N.Y., 12, 3558–3566.CrossRefGoogle Scholar
  8. 8.
    CUATRECASAS, P. (1974). Membrane receptors. A. Rev. Biochem., 43, 169–214.CrossRefGoogle Scholar
  9. 9.
    DALES, S. (1973). Early events in cell-animal virus interactions. Bacteriol. Rev., 37, 103–135.PubMedGoogle Scholar
  10. 10.
    GOTTLIEB, G., SKINNER, A.M. and KORNFELD, S. (1974). Isolation of a clone of Chinese hamster ovary cells deficient in plant lectin binding sites. Proc. natn. Acad. Sci., U.S.A., 71, 1078–1082.CrossRefGoogle Scholar
  11. 11.
    GOTTSCHALK, A., BELYAVIN, G. and BIDDLE, F. (1973). Glycoproteins as influenza virus haemagglutinin inhibitors and as cellular virus receptors. In: Glycoproteins; their composition, structure and function. (Gottschalk, A., Ed.). Part B, 1082–1096. Elsevier Publishing Co., Amsterdam, London and New York.Google Scholar
  12. 12.
    HOLLand, J.J. (1964). Viruses in animals and in cell culture. In: Microbial behaviour, ‘in vivo’ and ‘in vitro’. (Smith, H. and Taylor, J., Eds.). 14th Symp. Soc. gen. Microbiol., 257–271.Google Scholar
  13. 13.
    HUGHES, R.C. (1973). Glycoproteins as components of cellular membranes. Prog. Biophys. mol. Biol., 26, 189–268.PubMedCrossRefGoogle Scholar
  14. 14.
    HUGHES, R.C. and MAUTNER, V. (1972). Interaction of adenovirus with host cell membranes. In: Membrane mediated information. (Kent, P., Ed.). Vol. I, 104–125. Medical and Technical Publishing Co. Ltd., Lancaster.Google Scholar
  15. 15.
    HYMAN, R., LOCORBIERE, M., STAVEREK, S. and NICOLSON, G.L. (1974). Derivation of lymphama variants with reduced sensitivity to plant lectins. J. Nat. Cancer Inst., 52, 963–969.PubMedGoogle Scholar
  16. 16.
    MEAGER, A., BUTTERS, T.D., MAUTNER, V. and HUGHES, R.C. (1975). Interactions of KB cell glycoproteins with an adenovirus capsid protein. Eur. J. Biochem. (In press).Google Scholar
  17. 17.
    MEAGER, A., UNGKITCHANUKIT, A., NAIRN, R. and HUGHES, R.C. (1975). Ricin resistance in baby hamster kidney cells. Nature, Lond., 257, 137–139.CrossRefGoogle Scholar
  18. 18.
    NICOLSON, G.L. (1974). The interaction of lectins with animal cells. Int. Rev. Cytol., 39, 89–190.PubMedCrossRefGoogle Scholar
  19. 19.
    NORRBY, E. (1969). The structural and functional diversity of adenovirus capsid components. J. gen. Virol., 5, 221–236.PubMedCrossRefGoogle Scholar
  20. 20.
    PAPPENHEIMER, A.M. and GILL, D.M. (1973). Diphtheria. Science, N.J., 182, 353–358.CrossRefGoogle Scholar
  21. 21.
    PEPPER, D.S. (1964). The sialic acids of horse serum with special reference to their virus inhibitory properties. Biochim. biophys. Acta, 156, 317–326.CrossRefGoogle Scholar
  22. 22.
    PETERSON, O.H. (1974). Cell membrane permeability change: an important step in hormone action. Experimenta, 30, 1105–1107.CrossRefGoogle Scholar
  23. 23.
    PHILIPSON, L., LONBERG-HOLM, K. and PETERSON, U. (1969). Virus-receptor interaction in an adenovirus system. J. Virol., 2, 1064–1075.Google Scholar
  24. 24.
    RAPIN, A.M.C. and KALCKAR, H.H. (1971). The relation of bacteriophage attachment to lipopolysaccharide structure. In: Microbiol Toxins. Vol. IV. Bacterial Endotoxins. (Weinbaum, G., Kadis, S. and Ajl, S. J., Eds.), 267–307. Academic Press, New York and London.Google Scholar
  25. 25.
    REFSNES, K., OLSNES, S. and PIHL, A. (1974). On the toxic proteins ricin and abrin. Studies of their binding to and entry into Ehrlich ascites cells. J. biol. Chem., 249, 2557–3562.Google Scholar
  26. 26.
    SCHLESINGER, R.W. (1969). Adenoviruses: the nature of the virion and of controlling factors in productive or abortive infection and tumorigenesis. Adv. Virus Res., 14, 1–61.PubMedCrossRefGoogle Scholar
  27. 27.
    SIMPSON, L.L. and RAPPORT, M.M. (1971). Ganglioside inactivation of botulinum toxin. J. Neurochem., 18, 1341–1343.PubMedCrossRefGoogle Scholar
  28. 28.
    SPRINGER, G.F., SCHWICH, H.G. and FLETCHER, M.A. (1969). The relationship of the influenza virus inhibitory activity of glycoproteins to their molecular size and sialic acid content. Proc. natn. Acad. Sci., U.S.A., 64, 634–641.CrossRefGoogle Scholar
  29. 29.
    STECK, T.L. (1974). The organization of proteins in the human red blood cell membrane. J. Cell Biol., 62, 1–19.PubMedCrossRefGoogle Scholar
  30. 30.
    SUTTAJIT, M. and WINZLER, R.J. (1971). Effect of modification of N-acetyl neuraminic acid on the binding of glycoproteins to influenza virus and in susceptibility to cleavage by neuraminidase. J. biol. Chem., 246, 3398–3404.PubMedGoogle Scholar
  31. 31.
    VAN HEYNINGEN, S. (1974). Cholera Toxin: interaction of subunits with ganglioside GMI. Science, N.Y., 183, 656–657.CrossRefGoogle Scholar
  32. 32.
    VAN HEYNINGEN, S.E. and MELLANBY, J. (1968). The effect of cerebroside and other lipids on the fixation of tetanus toxin by gangliosides. J. gen. Microbiol., 52, 447–454.Google Scholar
  33. 33.
    VAN HEYNINGEN, W.E., CARPENTER, W.C., PIERCE, N.F. and GREENOUGH, W.B. (1971). Deactivation of cholera toxin by ganglioside. J. infect. Dis., 124, 415–419.PubMedCrossRefGoogle Scholar
  34. 34.
    WINZLER, R.J. (1970). Carbohydrates in cell surfaces. Int. Rev. Cytol., 23, 77–125.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Colin Hughes
    • 1
  1. 1.National Institute for Medical ResearchLondonUK

Personalised recommendations