Genetics of Host-Parasite Interactions

  • Roy Johnson
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 10)


Most plant pathogens, whether obligate parasites (biotrophs) or facultative saprophytes (necrotrophic pathogens) have a host range limited to few species. For host and parasite to survive and evolve together it is necessary for equilibrium, either dynamic or stable, to be established between them, such that each is capable of adequate reproduction. Examination of wild plant communities reveals, as for Solanumspecies and Phytophthora infestons, that their resistance may comprise genetic elements which show pronounced specificity to different strains of the pathogen and other elements which apparently do not show such specificity. During development of cultivated crops several processes have occurred which have tended to accentuate the effects of specificity. Among these I believe that the following are of importance.


Wheat Cultivar Late Blight Somatic Hybrid Stripe Rust Infection Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ARNOLD, M.H., INNES, N.L. and BROWN, S.J. (197). Resistance Breeding in Agricultural Research for Development: the Namulonge Contribution. (ARNOLD, M.H., Ed.), Cambridge University Press and Cotton Research Corporation. (In press).Google Scholar
  2. 2.
    BIFFEN, R.H. and ENGLEDOW, F.L. (1926). Wheat breeding investigations at the Plant Breeding Institute, Cambridge. Res. Monogr. Minist. Agrio. Fish., 4, 114.Google Scholar
  3. 3.
    BLACK, W. and GALLEGLY, M.E. (1957). Screening of Solanumspecies for resistance to physiologic races of Phytophthora infestons. Am. Potato J., 34, 273–281.CrossRefGoogle Scholar
  4. 4.
    BRIAN, P.W. (1975). The phenomenon of specificity in plant disease. This NATO Advanced Study Institute on Specificity in Plant Diseases.Google Scholar
  5. 5.
    BRIDGMON, G.H. and WILCOXSON, R.D. (1959). New races from mixtures of urediospores of varieties of Puccinia graminis. Phytopathology, 49, 428–429.Google Scholar
  6. 6.
    BROWDER, L.E. (1973). Specificity of the Puccinia reconditaf. sp. tritici: Triticum aestivum‘Bulgaria 88’ relationship. Phytopathology, 63, 524–528.CrossRefGoogle Scholar
  7. 7.
    CALDWELL, R.M., ROBERTS, J.J. and EYAL, Z. (1970). General resistance (“slow rusting”) to Pucoinia reconditaf. sp. tritioiin winter and spring wheat. Phytopathology, 60, 1287 (Abstr.).CrossRefGoogle Scholar
  8. 8.
    COTTER, R.U. and ROBERTS, B.J. (1963). A synthetic hybrid of two varieties of Pucoinia graminis. Phytopathology, 53, 344–346.Google Scholar
  9. 9.
    CHEUNG, D.S.M. and BARBER, H.N. (1972). Activation of resistance of wheat to stem rust. Trans. Br. mycol. Soc., 58, 333–336.CrossRefGoogle Scholar
  10. 10.
    DAY, P.R. (1974). Genetics of host-parasite interaction.W.H. Freeman and Company, San Francisco, 238 pp.Google Scholar
  11. 11.
    D’OLIVEIRA, B. and SAMBORSKI, D.J. (1966). Aecial stage of Puccinia reconditaon Ranunculaceae and Boraginaceae in Portugal. Proc. Cereal Rust Conf., Cambridge 1964, 133–150.Google Scholar
  12. 12.
    ESHED, N. and DINOOR, A. (1973). Genetic studies on the specialisation of crown rust into pathogenic varieties (Formae speciales). 2nd Int. Congr. Pl. Path., Minneapolis, Minnesota (Abstr.).Google Scholar
  13. 13.
    GRAHAM, K.M. (1963). Inheritance of resistance to Phytophthora infestonsin two diploid Mexican Solanumspecies. Euphytica, 12, 35–40.Google Scholar
  14. 14.
    GREEN, G.J. (1971). Hybridization between Puccinia graminis triticiand Puccinia gramtnis secalisand its evolutionary implications. Can. J. Bot., 49, 2089–2095.CrossRefGoogle Scholar
  15. 15.
    HIURA, U. (1973). Genetic basis of the host specialization in Erysiphe gramtnisDC. 2nd Int. Congr. Pl. Path., Minneapolis, Minnesota (Abstr.).Google Scholar
  16. 16.
    HENDRIX, J.W., BURLEIGH, J.R. and TU, JIN-CHANG. (1965). Oversummering of stripe rust at high elevations in the pacific Northwest-1963. Pl. Dis. Reptr., 49, 275–278.Google Scholar
  17. 17.
    HORSFALL, J.G., et al.Committee on Genetic Variability of Major Crops, Agricultural Board. (1972). Genetic vulnerability of major crops.National Academy of Sciences, Washington, D.C., 307 pp.Google Scholar
  18. 18.
    JENSEN, N.F. (1952). Intra-varietal diversification in oat breeding. Agron. J., 44, 30–34.CrossRefGoogle Scholar
  19. 19.
    JOHNSON, R. and ALLEN, D.J. (1975). Induced resistance to rust diseases and its possible role in the resistance of multiline varieties. Ann. appl. Biol., 80, 359–364.CrossRefGoogle Scholar
  20. 20.
    JOHNSON, R. and BOWYER, D.E. (1974). A rapid method for measuring production of yellow rust spores on single seedlings to assess differential interactions of wheat cultivars with Puccinia striiformis. Ann. appl. Biol., 77, 251–258.CrossRefGoogle Scholar
  21. 21.
    JOHNSON, R. and TAYLOR, A.J. (1972). Isolates of Puccinia striiformiscollected in England from the wheat varieties Maris Beacon and Joss Cambier. Nature, Lond., 238, 105–106.CrossRefGoogle Scholar
  22. 22.
    JOHNSON, R. and LAW, C.N. (1975). Genetic control of durable resistance to yellow rust (Puccinia striiformis)in the wheat cultivar Hybride de Bersee. Ann. appl. Biol., 81 (In press).Google Scholar
  23. 23.
    LUIG, N.H. and WATSON, I.A. (1972). The role of wild and cultivated grasses in the hybridisation of formae specialesof Puccinia graminis. Aust. J. biot. Sci., 25, 335–342.Google Scholar
  24. 24.
    LUPTON, F.G.H. and JOHNSON, R. (1970). Breeding for mature plant resistance to yellow rust in wheat. Ann. appl. Biol., 66, 137–143.CrossRefGoogle Scholar
  25. 25.
    LUPTON, F.G.H. and MACER, R.C.F. (1962). Inheritance of resistance to yellow rust (Puccinia glumarumErikss. and Henn.) in seven varieties of wheat. Trans. Br. mycol. Soc., 45, 21–45.CrossRefGoogle Scholar
  26. 26.
    METTIN, D., BLÜTHNER, W.D. and SCHLEGEL, G. (1973). Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations. Proc. fourth int. Wheat Genetics Symp., Columbia, Missouri, 179–184.Google Scholar
  27. 27.
    NEGULESCU, F. and IONESCU-COJOCARU, M. (1974). The outbreak of a new form of race 77 of Puccinia reconditaf. sp. triticion wheat cultivar Aurora in Romania in 1973. Cereat Rusts Bull., 2, 19–22.Google Scholar
  28. 28.
    NELSON, R.R. and TUNG, G. (1973). Cross protection by race O against race T of Helminthosporium maydis. Pl. Dis. Reptr., 57, 971–973.Google Scholar
  29. 29.
    NELSON, R.R., MACKENZIE, D.R. and SCHEIFELE, G.L. (1970). Interaction of genes for pathogenicity and virulence in Trichometasphaeria turcicawith different numbers of genes for vertical resistance in Zea mays. Phytopathology, 60, 1250–1254.CrossRefGoogle Scholar
  30. 30.
    NIEDERHAUSER, J.S. (1968). Resistance to Phytophthora infestansin Mexico. First int. Congr. Pl. Path., London, Abstr., 138.Google Scholar
  31. 31.
    RILEY, R., CHAPMAN, V. and JOHNSON, R. (1968). The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res., 12, 199–219.CrossRefGoogle Scholar
  32. 32.
    ROBINSON, R.A. (1973). Horizontal resistance. Rev. appl. Mycol., 52, 483–501.Google Scholar
  33. 33.
    SAMBORSKI, D.J. (1963). A mutation in Puccinia reconditaRob. ex. Desm. f. sp. triticito virulence on Transfer, Chinese Spring x Aegilops umbellulata zhuk. Can. J. Bot., 41, 475–479.CrossRefGoogle Scholar
  34. 34.
    SANFORD, G.B. and BROADFOOT, W.C. (1932). The relative susceptibility of cultivated and native hosts in Alberta to stripe rust. Scient. Agric., 13, 714–721.Google Scholar
  35. 35.
    SANGHI, A.K. and LUIG, N.H. (1974). Resistance in three common wheat cultivars to Puccinia graminis. Euphytica, 23, 273–280.CrossRefGoogle Scholar
  36. 36.
    SEARS, E.R. (1956). Transfer of leaf-rust resistance from Aegilops umbellulatato wheat. Brookhaven Symp. Biol., 9, 1–22.Google Scholar
  37. 37.
    SLESINSKI, R.S. and ELLINGBOE, A.H. (1971). Transfer of 35S from wheat to the powdery mildew fungus with compatible and incompatible parasite/host genotypes. Can. J. Bot., 49, 303–310.CrossRefGoogle Scholar
  38. 38.
    THODAY, J.M. (1961). Location of polygenes. Nature, Lond., 191, 368–370.CrossRefGoogle Scholar
  39. 39.
    THURSTON, H.D. (1971). Relationship of general resistance: late blight of potato. Phytopathology, 61, 620–626.CrossRefGoogle Scholar
  40. 40.
    VAN DER PLANK, J.E. (1963). Plant diseases: epidemics and control.Academic Press, New York and London, 349 pp.Google Scholar
  41. 41.
    VAN DER PLANK, J.E. (1968). Disease resistance in plants.Academic Press, New York and London, 206 pp.Google Scholar
  42. 42.
    VAN DER ZAAG, D.E. (1959). Some observations on breeding for resistance to Phytophthora infestons. Eur. Potato J., 2, 278–286.CrossRefGoogle Scholar
  43. 43.
    WOLFE, M.S. (1972). The forced evolution of cereal disease. Outl. Agric., 7, 27–31.Google Scholar
  44. 44.
    YARWOOD, C.E. (1954). Mechanism of acquired immunity to a plant rust. Proc. natn. Acad. Sci. U.S.A., 40, 374–377.CrossRefGoogle Scholar
  45. 45.
    ZELLER, F.J. (1973). 1B/1R wheat-rye chromosome substitutions and translocations. Proc. Fourth int. Wheat Genetios Symp.Columbia, Missouri, 209–221.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Roy Johnson
    • 1
  1. 1.Plant Breeding InstituteCambridgeUK

Personalised recommendations