Advertisement

Specific Interactions in Higher Plants

  • Hans F. Linskens
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 10)

Abstract

Interaction between cells is a characteristic of living systems (20). Unicellular systems interact in their environment in the liquid and/or gaseous phase. Multicellular living systems interact on two levels.

Keywords

Pollen Tube Sieve Tube Juglans Regia Viscum Album Stigma Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BALDEV, B. (1962). In vitro studies of floral induction on stem apices of Cusouta reflexa Roxb — a short-day plant. Ann. Bot., N.S., 26, 173 – 180.Google Scholar
  2. 2.
    BONNER, J. (1950). The role of toxic substances in the interaction of higher plants. Bot. Rev., 16, 51 – 65.CrossRefGoogle Scholar
  3. 3.
    BROOKS, M.G. (1951). Effect of black walnut trees and their products on other vegetation. Bull. W. Va. Univ. agric. Exp. Stn., 347, 1–31.Google Scholar
  4. 4.
    DELEUIL, G. (1951). Origine des substances toxiques du sol des associations sans thérophytes du Rosmarino-Ericion. C. r. hebd. Séano. Acad. Sci., Paris, 232, 2038 – 2039.Google Scholar
  5. 5.
    DONK, J.A.W.M. VAN DER (1974). Differential synthesis of RNA in self- and cross-pollinated styles of Petunia hybrida. Molec. gen. Genet., 131, 1–8.CrossRefGoogle Scholar
  6. 6.
    DONK, J.A.W.M. VAN DER (1974a). Synthesis of RNA and protein as a function of time and type of pollen tube-style interaction in Petunia hybrida L. Molec. gen. Genet., 134, 93 – 98.CrossRefGoogle Scholar
  7. 7.
    DONK, J.A.W.M. VAN DER (1975). Translation of plant messenger in egg-cells of Xenopus laevis. Nature, Lond., 256, 674 – 675.CrossRefGoogle Scholar
  8. 8.
    DÖRR, I. (1972). Der Anschluss der Cuseuta-Hyphen an die Siebröhren ihrer Wirtspflanzen. Protoplasma, 75, 167 – 184.CrossRefGoogle Scholar
  9. 9.
    EAST, E.M. (1929). Self-sterility. Biblphia genet., 5, 331 – 370.Google Scholar
  10. 10.
    ENDE, G. VAN DEN, and LINSKENS, H.F. (1974). Cutinolytic enzymes and phytopathogenesis. A. Rev. Pl. Pathol., 12, 247 – 258.Google Scholar
  11. 11.
    EVENARI, M. (1961). Chemical influences of other plants (allelopathy). Hand. Pfl. Physiol., 16, 691 – 736.Google Scholar
  12. 12.
    FUNK, G. (1955). Beiträge zur Kenntnis der Meeresalgen von Neapel. Pubbl. Staz. zool. Napoli, 25, Suppl., 178 pp.Google Scholar
  13. 13.
    GÄUMANN, E. (1951). Pflanzliche Infektions lehre. 2nd ed. Birkhäuser, Basel, 611 pp.Google Scholar
  14. 14.
    GrÜMMER, G. (1961). The role of toxic substances in the interrelationships between higher plants. In: Mechanisms of biological competition (Milthorpe, F.L., Ed.). Symp. Soc. exp. Biol., 15, 219 – 228.Google Scholar
  15. 15.
    HESLOP-HARRISON, J., HESLOP-HARRISON, Y. and BARNER, J. (1975). The stigma surface in incompatibility response. Proc. R. Soc., B, 188, 287 – 298.CrossRefGoogle Scholar
  16. 16.
    KERSTEKTER, R.E. and HULL, R.J. (1970). Autotrophic incorporation of l4CO2 in Cuscuta pentagona in relation to its parasitism. Adv. Front. Pl. Sci., 25, 83 – 91.Google Scholar
  17. 17.
    KNAPP, R. (1967). Experimentelle Soziologie und gegenScitige Beeinflussung der Pflanzen. Ulmer, Stuttgart. 202 pp.Google Scholar
  18. 18.
    KROH, M. (1966). Reaction of pollen after transfer from one stigma to another (contribution to the character of the incompatibility mechanism in Cruciferae). Züchter, 36, 185 – 189.Google Scholar
  19. 19.
    LEWIS, D. (1960). Genetic control of specificity and activity of the S antigen in plants. Proc. R. Soc., B, 151, 468 – 477.CrossRefGoogle Scholar
  20. 20.
    LINSKENS, H.F. (1957). Die Abwehrreaktionen der Pflanzen. Dekker and van der Vegt, Utrecht-Nijmegen. 20 pp.Google Scholar
  21. 21.
    LINSKENS, H.F. (1963). Oberflächenspannung an marinen Algen. Proc. K. ned. Akad. Wet., C., 66, 205 – 217.Google Scholar
  22. 22.
    LINSKENS, H.F. (1963a). Beitrag zur Frage der Beziehungen zwischen Epiphyten und Basiphyten bei marinen Algen. Pubbl. Staz. zool. Napoli, 33, 274 – 293.Google Scholar
  23. 23.
    LINSKENS, H.F. (1964). Biochemistry of incompatibility. In: Genetics to-day. (Geerts, S.J., Ed.). Vol. 3, 631 – 636. Pergamon Press, Oxford.Google Scholar
  24. 24.
    LINSKENS, H.F. (1968). Host-pathogen interaction as a special case of interrelations between organisms. Neth. J. Pl. Pathol., 74, Suppl. 1, 1–8.CrossRefGoogle Scholar
  25. 25.
    LINSKENS, H.F. (1973). The reaction of inhibition during incompatible pollination and its elimination. Fiziologiya Rast., 29, 192 – 203; also Soviet Pl. Physiol., 20, 156 – 166.Google Scholar
  26. 26.
    LINSKENS, H.F. (1975). Incompatibility in Petunia. Proc. R Soc., B, 188, 299 – 312.CrossRefGoogle Scholar
  27. 27.
    LINSKENS, H.F. (1975a). The physiological basis of incompatibility in angiosperms. Biol. J. Linn. Soc., 7 Suppl. 1, 143 – 152.Google Scholar
  28. 28.
    LINSKENS, H.F. and HEINEN, W. (1962). Cutinase-Nachweis in Pollen. Z. Bot., 50, 338 – 347.Google Scholar
  29. 29.
    MOLISCH, H. (1937). Der Einfluss einer Pflanze auf die andere. Allelopathie. Fischer, Jena, 106 pp.Google Scholar
  30. 30.
    MORAL, R. DEL and MULLER, C.H. (1969). Fog drip: a mechanism of toxin transport from Eucalyptus globulus. Bull. Torrey bot. Club., 96, 467 – 475.CrossRefGoogle Scholar
  31. 31.
    MULLER, C.H. (1969). Allelopathy as a factor in ecological process. Vegetation, 18, 348 – 357.CrossRefGoogle Scholar
  32. 32.
    RADEMACHER, B. (1959). Gegen Scitige Beeinflussung höherer Pflanzen. Hand. PflPhysiol., 11, 655 – 706.Google Scholar
  33. 33.
    RICE, E.L. (1974). Allelopathy. Academic Press, London, New York, 353 pp.Google Scholar
  34. 34.
    SCHUMACHER, W. (1934). Die Absorptionsorgane von Cuscuta odorata und der Stoffübertritt aus den Siebröhren der Wirtspflanzen. Jb. wiss. Bot., 80, 74–91.Google Scholar
  35. 35.
    WENT, F.W. (1940). Soziologie der Epiphyten eines tropischen Urwaldes. Ann. Jardin Botan. Buitenzorg, 50, 1–98.Google Scholar
  36. 36.
    WENT, F.W. (1970). Plants and the chemical environment. In: Chemical Ecology, (Sondheimer, E. and Simeone, J.B. Eds.), 71 – 82. Academic Press, New York and London.Google Scholar
  37. 37.
    WHITTAKER, R.H. (1970). The biochemical ecology of higher plants. In:Chemical Ecology. (Sondheimer, E. and Simeone, J.B. Eds.), 43 – 70. Academic Press, New York, London.Google Scholar
  38. 38.
    WOLSWINKEL, P. (1974). Complete inhibition of setting and growth of fruits of Vicia faba L. resulting from the draining of the phloem system by Cuscuta species. Acta bot. neerl., 23, 48 – 60.Google Scholar
  39. 39.
    WOLSWINKEL, P. (1974a). Enhanced rate of 14C-solute release to the free space by the phloem of Vicia faba stems parasitized by Cuscuta. Acta bot. neerl., 23, 177 – 188.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Hans F. Linskens
    • 1
  1. 1.Department of BotanyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations