The Characterization of an in Vitro Isolated Nuclei System for the Investigation of the Mechanism of Herpesvirus DNA Replication in Infected Human Embryonic Lung Cells

  • Alan Kolber
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 5)


Infection of human embryonic lung (HEL) cells by Herpes simplex type II virus stimulates labeled thymidine incorporation into an acid-preeipitable product as much as twentyfold higher than by mock-infection. The rates of overall in vitro and in vitro DNA synthesis and the relative fractions of Herpes and cell DNA synthesized in vitro and in vitro by nuclei isolated from the infected cells are the same at various times after infection. All four rNTPs strikingly stimulate 3H-TTP incorporation in nuclei from Herpes-infected but not mock-infected cells. The thermal lability of in vitro DNA synthesis is different for Herpes-infected than for mock-infected cells, although the relative fractions of cell and viral DNA made at 42°C and at 34°C are the same. Results of variable time pulse label experiments with the isolated nuclei system suggest a discontinuous mode of DNA replication.


Herpes Simplex Type Human Embryonic Lung Isotonic Buffer Human Embryonic Lung Cell Roux Flask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, Y., A. Dym, and I. Sarov. 1968. Virology 36:184–192.PubMedCrossRefGoogle Scholar
  2. Darai, G., and K. Munk. 1973. Nature New Biol. 241:268–270.PubMedCrossRefGoogle Scholar
  3. Duff, R., and F. Rapp. 1971. Nature New Biol. 223:48–51.Google Scholar
  4. Franke, B., and T. Hunter. 1974. J. Mol. Biol. 83:123–130.CrossRefGoogle Scholar
  5. Frenkel, N., and B. Roizman. 1972. J. Virol. 10:565–572.PubMedGoogle Scholar
  6. Good, N., G. Winget, N. Winter, T. Connolly, S. Izawa, and R. Singh. 1966. Biochemistry 5:467–477.PubMedCrossRefGoogle Scholar
  7. Gordin, M., U. Olshevsky, H. Rosenkranz, and Y. Becker. 1973. Virology 55:280–284.PubMedCrossRefGoogle Scholar
  8. Graham, B. J., H. Ludwig, D. L. Bronson, M. Benyesh-Melnick, and N. Biswal. 1972. Biochim. Biophys. Acta. 259:13–23.PubMedCrossRefGoogle Scholar
  9. Grossman, L., R. Watson, and J. Vinograd. 1973. Proc. Nat. Acad. Sei. U.S.A. 70:3339–3343.CrossRefGoogle Scholar
  10. Hay, J., E. Moss, and I. Halliburton. 1971. Biochem. J. 124:64p.Google Scholar
  11. Klein, G. 1972. Proc. Nat. Acad. Sei. U.S.A. 69:1056–1064.CrossRefGoogle Scholar
  12. Okazaki, R., K. Sugimoto, T. Okazaki, Y. Unae, and A. Sugino. 1970. Nature 228:223–226.PubMedCrossRefGoogle Scholar
  13. Olshevsky, U., I. Levitt, and Y. Becker. 1967. Virology 33:323–334.PubMedCrossRefGoogle Scholar
  14. Roizman, B. 1969. Herpesvirus, a biochemical definition of the group, pp. 1–79. In Current Topics in Microbiology and Immunology, Vol. 49. Springer Verlag, Heidelberg.Google Scholar
  15. Speyer, T. F., T. Chao, and L. Chao. 1972. J. Virol. 10:902–908.PubMedGoogle Scholar
  16. Stevens, J. G. 1966. Virology 29:570–579.PubMedCrossRefGoogle Scholar
  17. Sugimoto, K., T. Okazaki, and R. Okazaki. 1968. Proc. Nat. Acad. Sei. U.S.A. 60:1356–1362.CrossRefGoogle Scholar
  18. Sugino, A., S. Hirose, and R. Okazaki. 1972. Proc. Nat. Acad. Sei. U.S.A. 69:1863–1867.CrossRefGoogle Scholar
  19. Weissbach, A., S. C. L. Hong, J. Aucker, and R. Müller. 1973. J. Biol. Chem. 18:6270–6277.Google Scholar
  20. Winnacker, E., G. Magnusson, and P. Reichard. 1971. Biochem. Biophys. Res. Comm. 44:952-957.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Alan Kolber
    • 1
  1. 1.VirusforschungDeutsches KrebsforschungzentrumHeidelbergWest Germany

Personalised recommendations