Stability of Avian Oncornavirus Precursor Protein in a Line of Rsv-transformed Hamster Cells

  • Robert Eisenman
  • Volker M. Vogt
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 5)


Antibody to disrupted avian myeloblastosis virus was used to precipitate rous sarcoma virus-specific proteins from extracts of RSV-transformed hamster cells. These cells and heterologous transformed cells in general are known not to produce virus particles. When analyzed by dodecyl sulfate gel electrophoresis, the immune precipitates were shown to contain a polypeptide with exactly the same mobility as the AMV polypeptide that has been demonstrated previously to be a precursor to AMV structural proteins in infected chick cells. Tryptic fingerprints indicated that the hamster cell-RSV-polypeptide and the AMV-precursor are closely related. Unlike the AMV-precursor in chick cells, however, the hamster cell-RSV-polypeptide is not cleaved proteolytically to yield virion proteins. It is suggested that the block to virus production in mammalian cells transformed by avian oncornaviruses may be due to the inability of such cells to process the viral precursor polypeptide.


Virus Production Rous Sarcoma Virus Avian Myeloblastosis Virus Precursor Polypeptide Hamster Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altaner, C, and H. M, Temin. 1970. Virology 40:113–134.CrossRefGoogle Scholar
  2. Armstrong, D. 1969. J. Virol. 3:133–139.PubMedGoogle Scholar
  3. Bauer, H., and H. G. Janda. 1967. Virology 33:483–490.PubMedCrossRefGoogle Scholar
  4. Coffin, J. M. 1972. J. Virol. 10:153–156.PubMedGoogle Scholar
  5. Coffin, J., and H. M. Temin. 1971. Virology 8:630–642.Google Scholar
  6. Coffin, J., and H. M. Temin. 1972. J. Virol. 9:766–775.PubMedGoogle Scholar
  7. Fleissner, E. 1970. J. Virol. 5:14–21.PubMedGoogle Scholar
  8. Hanafusa, H., and T. Hanafusa. 1966. Proc. Nat. Acad. Sei. U.S.A. 55:532–538.CrossRefGoogle Scholar
  9. Huebner, R. J., D. Armstrong, M. Okuyan, P. S. Sarma, and H. C. Turner. 1964. Proc. Nat. Acad. Sei. U.S.A. 51:742–750.CrossRefGoogle Scholar
  10. Kotier, M. 1971. J. Gen. Virol. 12:199–206.CrossRefGoogle Scholar
  11. Roth, F. K., and R. M. Dougherty. 1969. Virology 38:278–284.PubMedCrossRefGoogle Scholar
  12. Sarma, P. S., W. Vass, and R. S. Huebner. 1966. Proc. Nat. Acad. Sei. U.S.A. 55:1435–1442.CrossRefGoogle Scholar
  13. Svoboda, J. 1960. Nature 186:980–981.PubMedCrossRefGoogle Scholar
  14. Vigier, P. 1967. Compt. Rend. 264:422–425.Google Scholar
  15. Vogt, V. M., and R. Eisenman. 1973. Proc. Nat. Acad. Sei. U.S.A. 70:1734–1738.CrossRefGoogle Scholar
  16. Zilber, L. A. 1965. Prog. Exp. Tumor Res. 7:1–48.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Robert Eisenman
    • 1
  • Volker M. Vogt
    • 1
  1. 1.Swiss Institut for Experimental Cancer ResearchLausanneSwitzerland

Personalised recommendations