Advertisement

Adenovirus DNA: Transcription During Productive Infection, Integration in Transformed Cells, and Replication in Vitro

  • Maurice Green
  • Tadashi Yamashita
  • Werner Büttner
  • Kei Fujinaga
  • Max Arens
  • Karl Brackmann
  • Maria Carla Loni
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 5)

Abstract

The human adenoviruses provide excellent model systems for studying the molecular biology of the mammalian cell, i.e., the mechanism of DNA replication and RNA transcription and translation, and for analyzing the integration and function of viral genes in transformed cells. Adenoviruses are icosahedral particles that are 80 nm in diameter, weigh 175 million daltons, and contain 9–10 polypeptides and 12–13% DNA (Green, 1970). Adenovirus genomes are linear, duplex DNA molecules of molecular weight 20–25 x 106 (Green, 1970). The interaction of the adenovirus genome with the cell can result in either (i) productive infection (usually human cells) in which thousands of virus particles are replicated and the cell is killed, or (ii) cell transformation (usually rodent cells) in which no virus is formed, but a portion of the viral genome is integrated into cellular DNA, and growth properties and macromolecular synthesis are controlled in an unknown way by information from viral genes.

Keywords

Human Adenovirus Adenovirus Genome Late Viral Gene Entire Viral Genome Neutral Sucrose Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Britten, R. J., and D. E. Kohne. 1968. Science 161:529–540PubMedCrossRefGoogle Scholar
  2. Büttner, W., Z. Veres-Molnar, and M. Green. In manuscript.Google Scholar
  3. Darnell, J. E., W. R. Jelinek, and G. R. Molloy. 1973. Science 181:1215–1221.PubMedCrossRefGoogle Scholar
  4. Fujinaga, K., S. Mak, and M. Green. 1968. Proc. Nat. Acad. Sei. U.S.A. 60:959–966.CrossRefGoogle Scholar
  5. Fujinaga, K., and M. Green. 1969. Proc. Nat. Acad. Sei. U.S.A. 65:375–382.CrossRefGoogle Scholar
  6. Fujinaga, K., K. Sekikawa, H. Yamazaki, and M. Green. 1974a, in press.Google Scholar
  7. Fujinaga, K., K. Sekikawa, and H. Yamazaki. 1974b, in press.Google Scholar
  8. Green, M. 1970. Ann. Rev. Biochem. 39:701–756.PubMedCrossRefGoogle Scholar
  9. Green, M. 1972. Proc. Nat. Acad. Sei. U.S.A. 69:1036–1041.CrossRefGoogle Scholar
  10. Green, M., and G. E. Daesch. 1961. Virology 13:169–176.PubMedCrossRefGoogle Scholar
  11. Green, M., J. T. Parsons, M. Pina, K. Fujinaga, H. Caffier, and M. Landgraf-Leurs. 1970. Cold Spring Harbor Symp. Quant. Biol. 35:803–818.CrossRefGoogle Scholar
  12. Horwitz, M. S., C. Brayton, and S. G. Baum. 1973. J. Virol. 11: 544–555.PubMedGoogle Scholar
  13. Kashing, D. M., and C. B. Kasper. 1969. J. Biol. Chem. 244:3786–3792.Google Scholar
  14. Landgraf-Leurs, M., and M. Green. 1971. J. Mol. Biol. 60:185–202.PubMedCrossRefGoogle Scholar
  15. Loni, M. C, and M. Green. 1973. J. Virol. 12:1288–2192.PubMedGoogle Scholar
  16. Parsons, J. T., and M. Green. 1971. Virology 45:154–164.PubMedCrossRefGoogle Scholar
  17. Pina, M., and M. Green. 1969. Virology 38:573–586.PubMedCrossRefGoogle Scholar
  18. Polasa, H., and M. Green. 1965. Virology 25:68–79.PubMedCrossRefGoogle Scholar
  19. Thomas, D., and M. Green. 1966. Proc. Nat. Acad. Sei. U.S.A. 56: 243–246.CrossRefGoogle Scholar
  20. Tsuei, D., K. Fujinaga, and M. Green. 1972. Proc. Nat. Acad. Sei. U.S.A. 69:427–430.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Maurice Green
    • 1
  • Tadashi Yamashita
    • 1
  • Werner Büttner
    • 1
  • Kei Fujinaga
    • 1
  • Max Arens
    • 1
  • Karl Brackmann
    • 1
  • Maria Carla Loni
    • 1
  1. 1.Institute for Molecular VirologySt. Louis University School of MedicineSt. LouisUSA

Personalised recommendations