Intracellular forms of Adenovirus DNA in Productively Infected Cells: Evidence for Integration of the Viral Genome

  • Walter Doerfler
  • Harold Burger
  • Ulla Lundholm
  • Ute Rensing
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 5)


In order to understand the mechanism of replication of adenovirus DNA in productively infected human cells, the intracellular forms of newly synthesized DNA have been studied. KB cells growing in monolayers were inoculated with CsCl-purified adenovirus type 2 (Ad2) at a multiplicity of 100 PFU/cell. At various times after infection, the cells were labeled with 3H-uridine or 3H-thymidine. In some experiments the cells were prelabeled with 14C-thymidine. The intracellular DNA was extracted after lysis of the cells with SDS or with alkali and was analyzed in dye-buoyant density gradients or by zonal centrifugation in neutral or alkaline sucrose gradients. The results of the experiments can be summarized as follows: 1) There is no evidence that parental or newly synthesized Ad 2 DNA becomes supercoiled. 2) A virus-specific DNA-RNA complex can be isolated in dye-buoyant density gradients. This complex is probably involved in transcription. 3) In CsCl density gradients viral DNA of high buoyant density is observed which is a precursor to virion DNA as judged from pulse-chase experiments. These molecules are in part single-stranded. 4) In alkaline sucrose gradients viral DNA is detected which sediments at a rate of 50–90 S. The evidence suggests that this DNA may represent an integrated form of the viral genome.


Post Infection Buoyant Density Equilibrium Sedimentation Intracellular Form Equilibrium Centrifugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burger, H., and W. Doerfler. 1974. J. Virol. 13:975–992.PubMedGoogle Scholar
  2. Burlingham, B. T., and W. Doerfler. 1971. J. Virol. 7:707–719.PubMedGoogle Scholar
  3. Collins, C. J., and G. Sauer. 1972. J. Virol. 10:425–432.PubMedGoogle Scholar
  4. Doerfler, W. 1968. Proc. Nat. Acad. Sei. U.S.A. 60:636–643.CrossRefGoogle Scholar
  5. Doerfler, W. 1969. Virology 38:587–606.PubMedCrossRefGoogle Scholar
  6. Doerfler, W. 1970. J. Virol. 6:652–666.PubMedGoogle Scholar
  7. Doerfler, W., and A. K. Kleinschmidt. 1970. J. Mol. Biol. 50: 579–593.PubMedCrossRefGoogle Scholar
  8. Doerfler, W., U. Lundholm, U. Rensing, and L. Philipson. 1973. J. Virol. 12:793–807.PubMedGoogle Scholar
  9. Eb, A, van der. 1973. Virology 51:11–23.PubMedCrossRefGoogle Scholar
  10. Frenkel, N., B. Roizman, E. Cassai, and A. Nahmias. 1972. Proc. Nat. Acad. Sei. U.S.A. 69:3784–3789.CrossRefGoogle Scholar
  11. Green, M. 1962. Cold Spring Harbor Symp. Quant. Biol. 27:219–235.PubMedCrossRefGoogle Scholar
  12. Green, M. 1970. Fed. Proc. 29:1265–1275.PubMedGoogle Scholar
  13. Hirai, K., and V. Defendi. 1972. J. Virol. 9:705–707.PubMedGoogle Scholar
  14. Hirai, K., J. Lehman, and V. Defendi. 1971. J. Virol. 8:708–715.PubMedGoogle Scholar
  15. Horwitz, M. S. 1971. J. Virol. 8:675–683.PubMedGoogle Scholar
  16. Hudson, B., W. B. Upholt, J. Devinny, and J. Vinograd. 1969. Proc. Nat. Acad. Sei. U.S.A. 62:813–820.CrossRefGoogle Scholar
  17. Jansz, H. S., J. Vlak, D. J. Ellens, P. C. van der Vliet, and J. S. Sussenbach. 1974. This symposium.Google Scholar
  18. Lett, J. T., I. Caldwell, C. J. Dean, and P. Alexander. 1967. Nature 214:790–792.PubMedCrossRefGoogle Scholar
  19. Lindberg, U., and J. E. Darnell. 1970. Proc. Nat. Acad. Sei. U.S.A. 65:1089–1096.CrossRefGoogle Scholar
  20. McGrath, R. A., and R. W. Williams. 1966. Nature 212:534–535.PubMedCrossRefGoogle Scholar
  21. Pettersson, U., and J. Sambrook. 1973. J. Mol. Biol. 73:125–130.PubMedCrossRefGoogle Scholar
  22. Pina, M., and M. Green. 1969. Virology 38:573–586.PubMedCrossRefGoogle Scholar
  23. Ralph, R. K., and J. S. Colter. 1972. Virology 48:49–58.PubMedCrossRefGoogle Scholar
  24. Robin, J., D. Bourgaux-Ramoisy, and P. Bourgaux. 1973. J. Gen. Virol. 20:233–237.PubMedCrossRefGoogle Scholar
  25. Sambrook, J., H. Westphal, P. R. Srinivasan, and R. Dulbecco. 1968. Proc. Nat. Acad. Sei. U.S.A. 60:1288–1295.CrossRefGoogle Scholar
  26. Sauer, G., K. Kammer, C. Kuhn, and W. Waldeck. 1974. This symposium.Google Scholar
  27. Stich, H. F., and D. S. Yohn. 1967. Nature 216:1292–1294.PubMedCrossRefGoogle Scholar
  28. Sugino, A., H. S. Hirose, and R. Okazaki. 1972. Proc. Nat. Acad. Sei. U.S.A. 69:1863–1867.CrossRefGoogle Scholar
  29. Sussenbach, J. S., P. C. van der Vliet, D. J. Ellens, and J. S. Jansz. 1972. Nature New Biol. 239:47–49.PubMedGoogle Scholar
  30. Takahashi, M., T. Ogino, K. Baba, and M. Onaka. 1969. Virology 37:513–520.PubMedCrossRefGoogle Scholar
  31. Vinograd, J., and J. E. Hearst. 1962. Fortschr. Chem. Org. Nat. 20:372–422.Google Scholar
  32. Vliet, P. C. van der, and J. S. Sussenbach. 1972. Eur. J. Biochem. 30:584–592.PubMedCrossRefGoogle Scholar
  33. Wickner, W., D. Brutlag, R. Scheckman, and A. Kornberg. 1972. Proc. Nat. Acad. Sei. U.S.A. 69:965–969.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Walter Doerfler
    • 1
    • 2
  • Harold Burger
    • 1
    • 2
  • Ulla Lundholm
    • 1
    • 2
  • Ute Rensing
    • 1
    • 2
  1. 1.Institute of GeneticsUniversity of CologneCologneGermany
  2. 2.The Rockefeller UniversityNew YorkUSA

Personalised recommendations