Advertisement

Principles of Genetic Regulation in Lower and Higher Plants

  • R. Loppes
  • R. F. Matagne
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 3)

Abstract

Living organisms are generally able to adapt themselves to relatively wide and sudden variations of the environmental conditions. As a result of a change in their surroundings, they may produce one or several additional enzymes specifically related to the new external conditions, This property of adaptation may be easily demonstrated with unicellular organisms the metabolism of which is strongly dependent on the growth medium. If a yeast cell is transferred from its normal medium containing mineral nitrogen to a medium containing arginine as the sole nitrogen source, it will rapidly synthesize two enzymes (arginase and ornithine transaminase) which are needed for degrading arginine into NH 4 + and glutamate [1]. The production of great amounts of these two enzymes will allow the cell to make all its nitrogenous compounds from arginine. Hence, the induction of arginine breakdown enzymes is a prerequisite for survival of the yeast in these particular conditions, That the repression of enzyme synthesis is a prerequisite for survival is also obvious. Certain species of Pseudomonas are able to grow on more than 100 different organic substrates [2].

Keywords

Structural Gene Nitrate Reductase Nitrate Reductase Activity Regulation Mutant Sole Nitrogen Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.J. MIDDELHOVEN, Biochim. Biophys. Acta 93 (1964) 650.PubMedCrossRefGoogle Scholar
  2. [2]
    L.N. ORNSTON, Bacteriol, Rev. 35 (1971) 87.Google Scholar
  3. [3]
    R.L. METZENBERG, Annu. Rev. Genetics 6 (1972) 111.CrossRefGoogle Scholar
  4. [4]
    D.S. HOGNESS, M. COHN and J. MONOD, Biochim. Biophys. Acta 16 (1955) 99.PubMedCrossRefGoogle Scholar
  5. [5]
    W.K. MAAS, Cold Spring Harbor Symp, Quant. Biol. 26 (1961) 183.CrossRefGoogle Scholar
  6. [6]
    J. BECHET, M. GRENSON and J.M, WIAME, Europ. J. Biochem. 12 (1970) 31.PubMedCrossRefGoogle Scholar
  7. [7]
    J.F. LEHMAN, M.K. GLEASON, S.K. AHLGREN and R.L. METZENBERG, Genetics 75 (1973) 61.PubMedGoogle Scholar
  8. [8]
    S. BAUMBERG, D.F. BACON and H.J. VOGEL, Proc. Nat. Acad. Sci. U.S. 53 (1965) 1029.CrossRefGoogle Scholar
  9. [9]
    N.A. KHAN, F.K. ZIMMERMANN and N.R. EATON, Molec. Gen. Genetics 124 (1973) 365.CrossRefGoogle Scholar
  10. [10]
    W.S. REZNIKOFF, Annu. Rev. Genetics 6 (1972) 133.CrossRefGoogle Scholar
  11. [11]
    H.E. UMBARGER, Annu. Rev. Biochem. 38 (1969) 323.PubMedCrossRefGoogle Scholar
  12. [12]
    F. JACOBS and J. MONOD, J. Mol. Biol. 3 (1961) 318.CrossRefGoogle Scholar
  13. [13]
    L.H. HARTWELL, Annu. Rev. Genetics 4 (1970) 373.CrossRefGoogle Scholar
  14. [14]
    A. TOH-E, Y. UEDA, S. KAKIMOTO and Y. OSHIMA, J. Bacteriol. 113 (1973) 727.Google Scholar
  15. [15]
    A. TOH-E, Y. UEDA and Y. OSHIMA, Genetics, 74 (1973) S 277.Google Scholar
  16. [16]
    J.M. CALVO and G.R. FINK, Annu. Rev. Biochem. 40 (1971) 943.CrossRefGoogle Scholar
  17. [17]
    N.A. KHAN and N.R. EATON, Molec. Gen. Genetics 112 (1971) 317.CrossRefGoogle Scholar
  18. [18]
    J. NORTH and D. LEWIS, Genet. Res. 18 (1971) 153.CrossRefGoogle Scholar
  19. [19]
    G. DORN, Genetical Res. 6 (1965) 13.CrossRefGoogle Scholar
  20. [20]
    J. BECHET, J.M. WIAME and M. DE DEKEN-GRENSON, Arch. Int. Physiol. Bioch. 70 (1962) 564.CrossRefGoogle Scholar
  21. [21]
    J. BECHET and J.M. WIAME, Biochem. Biophys. Res. Comm. 21 (1965) 266.CrossRefGoogle Scholar
  22. [22]
    P. THURIAUX, F. RAMOS, J.M. WIAME, M. GRENSON et J. BECHET, Arch. Int. Physiol. Biochim. 76 (1968) 955PubMedGoogle Scholar
  23. [23]
    F. MESSENGUY and J.M. WIAME, FEBS Letters 3 (1969) 47.PubMedCrossRefGoogle Scholar
  24. [24]
    T.R. MANNEY, J. Bacteriol. 96 (1968) 403.PubMedGoogle Scholar
  25. [25]
    T. KATSUNUMA, H.E. SCHOTT, S. ELSÄSSER and H. HOLZER, Europ. J. Biochem. 27 (1972) 520.PubMedCrossRefGoogle Scholar
  26. [26]
    A.R. FERGUSON, T. KATSUNUMA, H. BETZ and H. HOLZER, Europ. J. Biochem. 32 (1973) 444.PubMedCrossRefGoogle Scholar
  27. [27]
    K.N. SUBRAMANIAN and G.J. SORGER, J. Bacteriol. 110 (1972) 538.PubMedGoogle Scholar
  28. [28]
    K.N. SUBRAMANIAN and G.J. SORGER, J. Bacteriol. 110 (1972) 547.PubMedGoogle Scholar
  29. [29]
    A.B. PARDEE and L.S. PRESTIDGE, Biochem. Biophys. Acta 36 (1959) 545.PubMedCrossRefGoogle Scholar
  30. [30]
    K.R. GAYLER and K.T. GLASZIOU, Planta 84 (1969) 185.CrossRefGoogle Scholar
  31. [31]
    K.T. GLASZIOU, Annu. Rev. Plant Physiol. 20 (1969) 63.CrossRefGoogle Scholar
  32. [32]
    G.P. GIORGIEV, Annu. Rev. Genetics 3 (1969) 155.CrossRefGoogle Scholar
  33. [33]
    L. BEEVERS and R.H. HAGEMAN, Annu. Rev. Plant Physiol. 20 (1969) 495.CrossRefGoogle Scholar
  34. [34]
    R.L. TRAVIS, W.R. JORDAN and R.C. HUFFAKER, Plant Physiol. 44 (1969) 1150.PubMedCrossRefGoogle Scholar
  35. [35]
    P. FILNER, J.L. WRAY, J.E. WARNER, Science 165 (1969) 358.PubMedCrossRefGoogle Scholar
  36. [36]
    A. MARCUS, Annu. Rev. Plant Physiol. 22 (1971) 313.CrossRefGoogle Scholar
  37. [37]
    H.C. DOUGLAS and D.C. HAWTHORNE, Genetics 54 (1966) 911.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. Loppes
    • 1
  • R. F. Matagne
    • 1
  1. 1.Laboratory of Molecular Genetics, Department of BotanyUniversity of LiègeLiègeBelgium

Personalised recommendations