Isozymes and a Strategy for Their Utilization in Plant Genetics I. Isozymes: Genetic and Epigenetic Control

  • Michel Jacobs
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 3)


One of the most crucial problem facing the plant geneticist is the elucidation of the mechanisms which enables information coded in DNA to determine the morphologyof an organism. Early studies in this field, made on flower color mutants and their associated pigments (1,2) were limited by the fact that conclusions about genotypes were almost entirely based on phenotypic observations, and concerned morphological or complex physiological characteristics. However, in the last fifteen years, the impact of the “one gene-one enzyme” hypothesis of Beadle, Tatum and Horowitz has led to a new development of the biochemical genetics of higher plants by giving rise to studies that correlate differences in genotypes with enzyme variations and consider the earliest stages in the transcription and translation of the genetic code. Ten years ago most of our examples would be drawn from microorganisms, but now what emerges from higher plants forms an impressive bulk of data.


Epigenetic Control Biochemical Genetic Catechol Oxidase Hybrid Enzyme Leucine Amino Peptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Haldane, J.B.S. 1942. New paths in genetics pp 47 - 82, Harper, New YorkGoogle Scholar
  2. (2).
    Lawrence W.J.F. and J.R. Price, 1940. The genetics and biochemistry of flower color variation. Biol. Rev. Cambridge Phil. Soc. 15: 35-38.Google Scholar
  3. (3).
    Nelson 0.E. and B. Burr, 1973. Biochemical genetics of higher plants. Ann. Rev. Plant Physiol., 24: 493-518.Google Scholar
  4. (3).
    Kunkel, H.G. and Tiselius, A. 1951 J. Gen. Physiol. 35 - 89.Google Scholar
  5. (5).
    Smithies, O. 1955. Zone electrophoresis of serum in starch gels. Biochem. Journ. 61: 629Google Scholar
  6. (6).
    Ornstein and Davies, B.J. 1962. Disc electrophoresis, Distillation Products. Industries, Rochester.Google Scholar
  7. (7).
    Hunter, R.L. and Markert, E.L. 1957. Histochemical demonstration of enzymes separated by zone electrophoresis. Science 125: 1294.Google Scholar
  8. (8).
    Shannon L.M., 1968. Plant Isoenzymes. Ann. Rev. Pl. Physiol. 19: 187 - 210.CrossRefGoogle Scholar
  9. (9).
    Scandalios, I.G. 1969. Genetic control of multiple molecular forms of enzymes in plants: a review. Biochem. Genet. 3: 37-79.Google Scholar
  10. 10)Allard R.W. and A.L. Kahler. 1971. Allozyme polymorphisms in plant populations. Stadler Symposia, 3: 9 - 24.Google Scholar
  11. (11).
    Shaw, C.R. 1969. Isozymes: Classification, frequency and significance. Int. Rev. of Cyt. 25: 297.Google Scholar
  12. (12).
    Bernstein S.C., L.H. Throckmorton and J.L. Hubby. 1973. Still more genetic variability in natural populations. Proc. Nat. Acad. Sci. U.S.A., 70: 3928-3931Google Scholar
  13. (13).
    Schwartz D., L. Fuchsman and K.H.M.Grath, 1965. Allelic isozymes of the pH 7.5 esterase in maize. Genetics, 52: 1265 - 1268.PubMedGoogle Scholar
  14. (14).
    Mac Donald T. and J.L. Brewbakker, 1974. Isoenzyme Polymorphism in Flowering Plants ix The E5 -E10 esterase loci of maize. The Journal of Heredity, 65: 37 - 42.Google Scholar
  15. (15).
    Clegg M.T. and R.W. Allard, 1973. The genetics of Electrophoretic variants in Avena. The Journal of Heredity, 64: 3 - 6.Google Scholar
  16. (16).
    Appella, E. and C.L. Markert, 1961. Dissociation of lactate dehydrogenase into subunits with guanidine hydrochloride. Biochem. Biophys. Res. Communic. 6: 171-6.Google Scholar
  17. (17).
    Markert, C.L. 1963. Lactate dehydrogenase isozymes: dessociation and recombination of subunits. Science 140: 1329 - 30.PubMedCrossRefGoogle Scholar
  18. (18).
    Schwartz D., 1966. The genetic control of alcohol dehydrogenase in maize: gene duplication and respression. Proc. Nat. Acad. Sci. U.S.A., 56: 1431 - 1436.CrossRefGoogle Scholar
  19. (19).
    Freeling M. and D. Schwartz, 1973. Genetic relationships between the multiple alcohol dehydrogenases of maize. Biochemical Genet. 8: 27 - 36.CrossRefGoogle Scholar
  20. (20).
    Hart G.E., 1970. Evidence for triplicate genes for alcohol dehydrogenase in hexaploid wheat. Proc. Nat. Acad. Sci. U.S.A., 66: 1136 - 1141.CrossRefGoogle Scholar
  21. (21).
    Jacobs, M. 1974. Contrôle génétique des isozymes de la leucine aminopeptidase chez Arabidopsis thaliana. Bull. Soc. Roy. Bot. Belg. in the press.Google Scholar
  22. (22).
    Schwartz D., 1960. Genetic Studies on Mutant Enzymes in Maize: Synthesis of Hybrid Enzymes by Heterozygotes. Genetics, 46: 1210 - 1215.Google Scholar
  23. (23).
    Scandalios J.G., 1969. Genetic control of multiple molecular forms of catalase in maize. Annals of the New York Academy of Science, 151: 274 - 293.CrossRefGoogle Scholar
  24. (24).
    Scandalios J.G., E.H. Liu and M.A. Campeau, 1972. The effects of intragenic and intergence complementation on catalase structure and function in maize: a molecular approach to heterosis. Archives of biochemistry and biophysics, 153: 695 - 705.PubMedCrossRefGoogle Scholar
  25. (25).
    Jacobs, M. and Schwind, F. 1973. Genetic control of isozymes of acid phosphatase in Arabidopsis thaliana. Plant Sci. Letters 1: 95-104.Google Scholar
  26. (26).
    Jacobs, M. and Schwind, F. 1974. Biochemical genetics of Arabidopsis acid phosphatases polymorphism, tissue expression and genetics of AP1, AP2 and AP3 loci. 3rd Int. Conf. on Isozymes, C.L. Markert, ed. Academic Press, N.Y. (in press).Google Scholar
  27. (27).
    O’Brien, S.J., 1973. On Estimating functional gene number in Eukaryotes. Nature New Biology, 242: 52 - 54.PubMedGoogle Scholar
  28. (28).
    Sofer W.H. and M.A. Hatkoff, 1972. Chemical selection of alcohol dehydrogenase negative mutants in Drosophila. Genetics, 12: 545 - 549.Google Scholar
  29. (29).
    Bell J.B., R.J. Mac Intyre and A.P. Olivieri, 1972. Induction of null-activity mutants for the acid phosphatase-1 gene in Drosophila melanogaster. Biochemical Genetics, 6: 206 - 216.CrossRefGoogle Scholar
  30. (30).
    Schwartz D., 1971. Dimerization Mutants of Alcohol Dehydrogenase of Maize. Proc. Nat. Acad. of Sciences 68 (1): 145 - 146.CrossRefGoogle Scholar
  31. (31).
    Schlesinger M.J. and L. Andersen, 1968. Multiple molecular forms of the alkaline phosphatase of Escherichia Coli. Annals of the New York Academy of Science, 151: 159 - 170.CrossRefGoogle Scholar
  32. (32).
    Epstein, C.J. and A.N. Schechter. 1968. An approach to the problem of conformational isozymes. Ann. N.Y. Acad. Sci. 151: 85-101.Google Scholar
  33. (33).
    Kitto, G.B., P.M. Wasserman, and N.O. Kaplan. 1966. Enzymatically active conformers of mitochondrial malate dehydrogenase. Proc. Nat. Acad. Sci. U.S.A. 56: 578.Google Scholar
  34. (34).
    Schwartz, D. 1965. Genetic studies on mutant enzymes in maize. VI. Elimination of allelic isozyme variation by glyceraldehyde treatment. Genetics 52: 1295-1302.Google Scholar
  35. (35).
    Lerner H.R., A.M. Mayer and E. Harel. 1972. Evidence for conformational changes in grape catechol oxidase. Phytochemistry, 11: 2415 - 2421.CrossRefGoogle Scholar
  36. (36).
    Harel E., A.M. Mayer and E. Lehman. 1973. Multiple Forms of Vitis Vinifera Catechol oxidase. Phytochemistry, 12: 2649 - 2654.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Michel Jacobs
    • 1
  1. 1.Laboratorium voor PlantengeneticaVrije Universiteit BrusselSt. Genesius-RodeUSA

Personalised recommendations