Induction of Auxotrophic Mutations in Plants

  • G. P. Rédei
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 3)


Auxotrophic mutants in microorganisms have contributed most importantly to the rapid development of genetics and biochemistry in the last three decades. Their usefulness is not limited to elucidation of the genetic control of biochemical pathways but they are indispensable for the study of protein synthesis, regulation, various mechanisms of information transfer, the nature of mutation etc.


Mutation Rate Cost Ratio Auxotrophic Mutant Mutagenic Treatment Selective Screening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. BONNER, D. 1946 Production of biochemical mutations in Penicillium. Amer. J. Bot. 33: 788–91.CrossRefGoogle Scholar
  2. BOYNTON, T. E. 1966 Chlorophyll-deficient mutants in tomato requiring vitamin B1. I. Genetics and physiology. Hereditas 56: 171–99.CrossRefGoogle Scholar
  3. BRONSON, M. J., C. SQUIRES and C. YANOFSKY 1973 Nucleotide sequences from tryptophane messenger RNA of Escherichia coli: the sequence corresponding to the amino-terminal region of the first polypeptide specified by the operon. Proc. Nat. Acad. Sci. U.S. 70: 2335–9.CrossRefGoogle Scholar
  4. CARLSON, P. S. 1970 Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum. Science 168: 487–9.PubMedCrossRefGoogle Scholar
  5. CHU, E. H. Y., N. C. SUN and C. C. CHANG 1972 Induction of auxotrophic mutations by treatment of Chinese hamster cells with 5-bromodeoxyuridine and black light. Proc. Nat. Acad. Sci. U. S. 69: 3459–63.CrossRefGoogle Scholar
  6. COCKING, E. C. 1972 Plant cell protoplasts - isolation and development. Ann. Rev. Plant. Physiol. 23: 29–50.CrossRefGoogle Scholar
  7. FEENSTRA, W. J. 1964 Isolation of nutritional mutants in Arabidopsis thaliana. Genetica 35: 259 /69.Google Scholar
  8. LANGRIDGE, F. 1955 Biochemical mutations in the crucifer Arabidopsis thaliana ( L.) Heynh. Nature 176: 260–1.PubMedCrossRefGoogle Scholar
  9. LANGRIDGE, J. and R. D. BROCK 1961 A thiamine-requiring mutant of the tomato. Aust. J. Biol. Sci. 14: 66–9.Google Scholar
  10. LAND, J. B. and G. NORTON 1970 The nature of the leucine requirement of the barley mutant Xan-b6i. Genet. Res. Camb. 15: 1357Google Scholar
  11. LI, S. L. and RÉDEI, G. P. 1969a Thiamine mutants of the crucifer, Arabidopsis. Biochem. Genet. 3: 163–170.PubMedCrossRefGoogle Scholar
  12. LI, S. L. and G. P. RÉDEI 1969b Estimation of mutation rate in autogamous diploids. Radiation Bot. 9: 125–31.CrossRefGoogle Scholar
  13. LI, S. L. and G. P. RÉDEI 1969c Allelic complementation at the pyrimidine (py) locus of the crucifer, Arabidopsis. Genetics 62: 281–8.PubMedGoogle Scholar
  14. LI, S. L. and G. P. RÉDEI 1969d Gene locus specificity of the glucose effect in the thiamine pathway of the angiosperm, Arabidopsis. Plant Physiology 44: 225–9.PubMedCrossRefGoogle Scholar
  15. LI, S. L., and G. P. RÉDEI and C. S. GOWANS 1967 A phylogenetic comparisón of mutation spectra. Molec. Gen. Genet. 100: 7783.Google Scholar
  16. LI, S. L. and C. YANOFSKY 1973 Amino acid sequence studies with the tryptophan synthetase chain of Salmonella typhimurium. Proc. Nat. Acad. Sci. U.S. 248: 1830–6.Google Scholar
  17. LURIA, S. E. and M. DELBRUCK 1943 Mutation in bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511.PubMedGoogle Scholar
  18. MARGOLIASH, E. 1963 Primary structure and evolution of cytochrome c. Proc. Nat. Acad. Sci. U. S. 38: 672–9.CrossRefGoogle Scholar
  19. MATHER, K. 1957 The Measurement of Linkage in Heredity. Methuen & Co. London.Google Scholar
  20. MÜLLER, A. J. 1963 Embryonentest zum Nachweis recessiver Letalfaktoren bei Arabidopsis thaliana Biol. Zbl. 83: 133–63.Google Scholar
  21. NELSON, 0. E., Jr. 1967 Biochemical genetics of higher plants. Ann. Rev. Genet. 1: 245–68.CrossRefGoogle Scholar
  22. RÉDEI, G. P. 1960 Genetic control of 2,5-dimethyl-4-aminopyrimidine requirement in Arabidopsis thaliana. Genetics 45: 1007.Google Scholar
  23. RÉDEI, G. P. 1962 Genetic block of “vitamin thiazole” synthesis in Arabidopsis. Genetics 47: 979.Google Scholar
  24. RÉDEI, G. P. 1965 Genetic blocks in the thiamine synthesis of the angiosperm Arabidopsis. Amer. J. Bot. 52: 834–41.CrossRefGoogle Scholar
  25. RÉDEI, G. P. 1970 Arabidopsis thaliana (L.) Heynh. A review of the genetics and biology. Bibliographia Genet. 21: 1–151.Google Scholar
  26. RÉDEI, G. P. 1974 Economy in mutation experiments. Zeitschr. Pflanzenzucht. in press.Google Scholar
  27. RUDDT, E. F. H. 1973 Linkage analysis in man by somatic cell genetics. Nature 242: 165–7.CrossRefGoogle Scholar
  28. SHERMAN, F. and J. W. STEWART 1971 Genetics and biosynthesis of cytochrome c. Ann. Rev. Genet. 5: 257–96.PubMedCrossRefGoogle Scholar
  29. THOMPSON. L. H. and R. M. BAKER 1973 Isolation of mutants of cultured mammalian cells. Pp. 209–81. Methods in Cell Biology, Prescott, D. M., Ed., Vol. 6. Acad Press, New York.Google Scholar
  30. WALLES, B. 1963 Macromolecular physiology of plastids, IV. On amino acid requirements of lethal chloroplast mutants in barley. Hereditas 50: 317–44.CrossRefGoogle Scholar
  31. YČAS, M. 1969 The Biological Code. North-Holland Publ. Co. Amsterdam.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • G. P. Rédei
    • 1
  1. 1.Department of AgronomyUniversity of MissouriColumbiaUSA

Personalised recommendations