Advertisement

Solid-Solution Interface: Its Role in Regulating the Chemical Composition of Natural Waters

  • C. P. Huang
Part of the Marine Science book series (MR, volume 7)

Abstract

The presence of suspended particles in natural waters can significantly affect the fate of most chemical constituents. Selective adsorption of chemical species onto suspended particles followed by differential coagulation of the suspended particulate signifies the importance of solid-solution interface in regulating the chemical composition of natural waters. The above interfacial reactions are governed by the intrinsic properties of the suspended particles, the nature of the solutes and the physical-chemical characteristics of the aquatic environment.

Keywords

Trace Metal Clay Mineral Suspended Solid Calcium Carbonate Estuarine Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, R. J. and Riley, P. W., The Adsorption of Polyoxyethylene Alkyphenol onto Calcium Carbonate from Aqueous Solution, Jour. Colloid Interface Sci., 48, 161, 1974.CrossRefGoogle Scholar
  2. Baker, R. A., Campbell, S. J., and Anspach, F. R., Electrophoretic and Taste and Odor Measurement in Plant Control, Jour. Amer. Water Works Assoc., 57, 363, 1965.Google Scholar
  3. Banin, A., Gal, M., Zohar, Y., and Singer, A., The Specific Surface Area of Clays in Lake Sediments—Measurement and Analysis of Contributors in Lake Kinneret, Israel, Amer. Soc. Limno. and Oceanog., 20, 278, 1975.CrossRefGoogle Scholar
  4. Berridge, S. A., Dean, R. A., Fallows, R. G., and Fish, A., The Properties of Persistent Oils at Sea, Jour. Inst. Pet., 54, 300, 1968a.Google Scholar
  5. Bien, G. S., Contors, D. E., and Thomas, W. E., The Removal of Soluble Silica from Fresh Water Entering the Sea, Geochim, et Cosmochim. Acta, 14, 35, 1958.CrossRefGoogle Scholar
  6. Boothe, P. N. and Knauer, G. A., The Possible Importance of Fecal Material in the Biological Amplification of Trace and Heavy Metals, Amer. Soc. Limno. and Oceanog., 17 (2), 270, 1972.CrossRefGoogle Scholar
  7. Bopp, F., Ill, The Baseline Concentration of Trace Metal in Delaware Estuary, M. S. Thesis, University of Delaware, Newark, Delaware, 1973.Google Scholar
  8. Bortleson, G. C. and Lee, G. F., Phosphorus, Iron, and Manganese Distribution in Sediment Cores of Six Wisconsin Lakes, Amer. Soc. Limno. and Oceanog., 19, 794, 1974.CrossRefGoogle Scholar
  9. Bowden, J. N., Bolland, M. D. A., Posner, A. M., and Quirk, J. P., Generalized Model for Anion and Cation Adsorption at Oxide Surfaces, Nature, 245, 81, 1973.Google Scholar
  10. Broecker, W. S., Chemical Oceanography, Harcourt Brace Jovanovich, Inc., 1976.Google Scholar
  11. Carritt, D. E. and Goodjal, S., Sorption Reactions and Some Ecological Implications, Deep Sea Res., 224, 1954.Google Scholar
  12. Carroll, D., Role of Clay Minerals in the Transportation of Iron, Geochim. et Cosmochim. Acta, 14, 1, 1958.CrossRefGoogle Scholar
  13. Chen, K. Y., Young, C. S., Jan, T. K., and Rohatgi, N., Suspended and Dissolved Trace Metals in Wastewater Effluents, Jour. Water Poll. Control Fed., 6, 2663, 1974.Google Scholar
  14. Chen, K. Y. and Lockwood, R. A., Evaluation Strategies of Metal Pollution in Oceans, Jour. Environ. Div., Proceedings of Amer. Soc. Civil Eng., 102 (EE2), 347, 1976.Google Scholar
  15. Chen, Y. S., Butler, J. N., and Stumm, W., Kinetics Study of Phosphate Reaction with Aluminum Oxide and Kaolinite, Environ. Sci. and Technol., 4 (4), 327, 1973.Google Scholar
  16. Chester, R. and Stoner, J. H., Trace Elements in Total Particulate Material from Surface Sea Water, Nature, 255, 50, 1975.CrossRefGoogle Scholar
  17. Dalrymple, R. J., Hodd, S. L., and Morin, D. C., Physical and Settling Characteristics of Particulates in Storm and Sanitary Wastewaters, EPA-670/2-75-011, 1975.Google Scholar
  18. Edzwald, J. K., Upchurch, J. B., and O’Melia, C. R., Coagulation in Estuaries, Environ. Sci, and Technol., 58, 1974.Google Scholar
  19. Faust, S. D. and Magner, M. C., Electromobility Values of Particulate Matter in Domestic Wastewater, Water and Sewage Works, 111, 1964.Google Scholar
  20. Forbes, E. A. and Quirk, J. P., The Specific Adsorption of Inorganic Hg(II) Species and Co(III) Complex Ions on Goethite, Jour. Colloid Interface Sci., 49 (3), 403, 1974.CrossRefGoogle Scholar
  21. Fordham, A. N., Sorption and Precipitation of Iron on Kaolinite, II. Sorption Isotherms and the Interpretation in Terms of Iron (III) Ionic Equilibria, Australian Jour. Soil Res., 7, 199, 1969.CrossRefGoogle Scholar
  22. Forrester, W. D., Distribution of Suspended Soil Particles Following the Grounding of the Tanker Arrow, Jour. Marine Res., 29, 151, 1976.Google Scholar
  23. Foster, P. and Hunt, D. T. E., Geochemistry of Surface Sediments in an Acid Stream Estuary, Marine Geol., 18, M13 - 21, 1975.CrossRefGoogle Scholar
  24. Gibbs, R. J., Mechanisms of Trace Metal Transport in Rivers, Science, 180 (4081), 71, 1973.CrossRefGoogle Scholar
  25. Gordon, D. C., A Microscopic Study of Organic Particles in the North Atlantic Ocean, Deep Sea Res., 17, 175, 1970.Google Scholar
  26. Graham, W. S., The Adsorption Characteristics of Free Amino Acids and Protein at the Solid-Solution Interface, M. S. Thesis, University of Delaware, Newark, Delaware, 1976.Google Scholar
  27. Hahn, H. H. and Stumm, W., The Role of Coagulation in Natural Waters, Amer. Jour. Sci., 268, 354, 1970.CrossRefGoogle Scholar
  28. Hamaker, J. W., Goring, C. A. I., and Youngson, C. R., Sorption and Leaching of 4-Amino-3,5.6-Trichloropicolinic Acid in Soils, in Organic Pesticides in the Environment, Adv. Chem. Ser. 60, A.C.S., 280, 1966.Google Scholar
  29. Helfgott, T., Hunter, J. V., and Rickert, D., Analytical and Process Classification of Effluents, Jour. Sanitary Eng. Div., Proceedings of Amer. Soc. Civil Eng., SA3, 779, 1970.Google Scholar
  30. Heiz, G. R., Huggett, R. J., and Hill, J. M., Behavior of Mn, Fe, Cu, Zn, Cd, and pb Discharged from a Wastewater Treatment Plant into an Estuarine Environment, Water Res., 9, 631, 1975.CrossRefGoogle Scholar
  31. Hemwall, J. R., The Removal of 4-tert-butylpyrocatechol (TBC) by Clay Minerals, Proceedings Intern. Clay Mineral Conf., Stockholm, 1, 319, 1963Google Scholar
  32. Hingston, F. J. and Raupach, M., The Reaction Between Monosilic Acid and Aluminum Hydroxide, I. Kinetics of Adsorption of Silic Acid by Aluminum Hydroxide, Australian Jour. Sci., 51, 295, 1967.Google Scholar
  33. Hingston, F. J., Posner, A. M., and Quirk, J. P., Competitive Adsorption of Negatively Charged Ligands on Oxide Surfaces, Discussion of the Faraday Society, No. 52, 334, 1971.CrossRefGoogle Scholar
  34. Hingston, F. J., Atkinson, R. J., Posner, A. M., and Quirk, J. P., Specific Adsorption of Anions on Goethite, Ninth International Conference, Soil Sci. Adelaide,. 1, 669, 1968.Google Scholar
  35. Horowitz, A., The Geochemistry of Sediments from the North Reycjanes Ridge and the Iceland-Faroes Ridge, Marine Geol., 17, 103, 1974.CrossRefGoogle Scholar
  36. Hsu, P. H., Adsorption of Phosphate by Aluminum and Iron in Soils, Soil Sci. Soc. Amer. Proc., 28, 174, 1964.Google Scholar
  37. Huang, C. P., The Adsorption of Phosphate at the Hydrous y-A and 203 Electrolyte Interface, Jour. Colloid Interface Sci., 53, 178, 1975a.CrossRefGoogle Scholar
  38. Huang, C. P., The Removal of Aqueous Silica from Dilute Aqueous Solution, Earth and Planetary Sci. Letters, 27, 205, 1975b.CrossRefGoogle Scholar
  39. Huang, C. P., Elliott, H. A., and Ashmead, R. A., Interfacial Reactions and the Fate of Heavy Metais in Soil-Water Systems, J. Water Pollution Control Federation, 49, 745, 1977.Google Scholar
  40. James, R. O. and Healy, T. W., Adsorption of Hydrolyzable Metal Ions at Oxide-Water Interface, Jour. Colloid Interface Sci., 40 (1), 65, 1972.CrossRefGoogle Scholar
  41. Khalid, R. A., Gambrell, R. P., and Patrick, W. H., Jr., Sorption and Release of Mercury by Mississippi River Sediment as Affected by pH and Redox Potential, Biological Implications of Metals in the Environment, 15th Ann. Life Sci. Symp., Richland, Washington, 1975.Google Scholar
  42. Krey, J., Detritus in the Ocean and Adjacent Sea, in Estuarines (ed., G. H. Lauff ), Amer. Assoc. Advan. Sci. Pub., 83, 1967.Google Scholar
  43. Krumbein, W. C. and Garrels, R. M., Origin and Classification of Chemical Sediments in Terms of pH and Oxidation-Reduction Potential, Jour. Geol., 60, 1, 1952.CrossRefGoogle Scholar
  44. Leckie, J. O. and James, R. O., Control Mechanisms for Trace Metals in Natural Waters, in Aqueous-Environmental Chemistry of Metals (ed., A. J. Rubin), 1, 1974.Google Scholar
  45. Lindsay, W. L. and Norvall, W. A., Equilibrium Relationships of Zn+2, Fe+2, Ca+2, and H+ with EPTA and DTPA in Soils, Soil Sci. Soc. Amer. Proc., 33, 62, 1969.CrossRefGoogle Scholar
  46. Loganathan, P., Sorption of Heavy Metals in a Hydrous Manganese Oxide, Ph.D. Thesis, University of California at Davis, 1971.Google Scholar
  47. Lotse, E. G. Graetz, D. A., Chesters, G., Lee, G. B. and Newland, L. W., Lindane Adsorption by Lake Sediments, Jour. Environ. Sci. and Technol., 2, 353, 1968.CrossRefGoogle Scholar
  48. Lush, D. L. and Hynes, H. B. N., The Formation of Particles in Freshwater Leachates of Dead Leaves, Amer. Soc. Limno. and Oceanog., 18, 968, 1973.CrossRefGoogle Scholar
  49. Mackenzie, F. T. and Garrels, R., Silicate-Bicarbonate Balance in the Ocean and Early Diagnosis, Jour. Sedimentary Petrology, 36 (4), 1075, 1966.Google Scholar
  50. Manheim, F. T. and Hathaway, J. C., Suspended Matter in Surface Waters of the Northern Gulf of Mexico, Amer. Soc. Limno. and Oceanog., 17 (1), 17, 1972.CrossRefGoogle Scholar
  51. Mason, B., Principles of Geochemistry, John Wiley and Sons, New York, Third Edition, 1966.Google Scholar
  52. McLerran, C. J. and Holmes, C. W. Deposition of Zinc and Cadmium by Marine Bacteria in Estuarine Sediment, Amer. Soc. Limno. and Oceanog., 19, 998, 1974.CrossRefGoogle Scholar
  53. Morgan, J. J. and Stumm, W., The Role of Multivalent Metal Oxides in Limnological Transformations, as Exemplified by Iron and Manganese, Proceedings of Second International Water Poll. Res. Conf., 103, 1964.Google Scholar
  54. Murray, D. J., Healy, T. W., and Fuerstenau, D. W., The Adsorption of Aqueous Metal on Colloidal Hydrous Manganese Oxide in Adsorption from Aqueous Solution, Adv. Chem. Ser., 79, A.C.S., 1969.Google Scholar
  55. Murphy, W. L. and Zeigler, T. W., Practices and Problems in the Confinement of Dredged Material in Corps of Engineers Project, U. S. Army Engineers Waterways Experiment Station, Vicksburg, Mississippi, Tech. Rept. D-74-2, 1974.Google Scholar
  56. Nash, N., Sludge Disposal and the Coastal Metropolis (ed., T. Church), Marine Chemistry in the Coastal Environment, A.C.S. Symposium Ser. 18, 1975.Google Scholar
  57. Neihof, R. A. and Loeb, G. I., The Surface Charge of Particulate Matter in Seawater, Amer. Soc. Limno. and Oceanog., 17, 7, 1972.CrossRefGoogle Scholar
  58. Neisheisel, J., Long Range Spoil Disposal Study, Part III. Sub-study of Nature, Source, and Cause of the Shoal, Appendix A, U. S. Army Engineering District, Corps of Engineers, 1973.Google Scholar
  59. Perrot, K. W., Langdon, A. G., and Wilson, A. T., Sorption of Anions by the Cation Exchange Surface of Muscovite, Jour. Colloid Interface Sci., 48, 10, 1974.CrossRefGoogle Scholar
  60. Price, N. B. and Calvert, S. E., A Study of the Geochemistry of Suspended Particulate Matter in Coastal Waters, Marine Chem., 1, 169, 1975.CrossRefGoogle Scholar
  61. Rao, N. V. N. D. and Rao, M. P., Trace Element Distribution in the Continental Shelf Sediments Off the East Coast of India, Marine Geol., M43, 1973.Google Scholar
  62. Riley, G. A., Organic Aggregates in Seawater and the Dynamics of Their Formation and Utilization, Limno. Oceanog., 8, 372, 1963.CrossRefGoogle Scholar
  63. Riley, G. A., Particulate Organic Matter in Seawater, Adv. Mar. Biol., Qr 1, 1970.Google Scholar
  64. Russell-Hunter, W. D., Aquatic Productivity, Macmillan Co., Colier-Macmillan, Ltd., London, 30, 1970.Google Scholar
  65. Schink, D. R., Budget for Dissolved Silica in the Mediterranean Sea, Geochim. et Cosmochim. Acta. 31, 987, 1967.CrossRefGoogle Scholar
  66. Sheldon, R. W., Prakash, A., and Sutcliffe, W. H., Jr., The Size Distribution of Particles in the Ocean, Amer. Soc. Limno. and Oceanog., 17, 327, 1972.CrossRefGoogle Scholar
  67. Sheldon, R. W., Sutcliffe, Jr., W. H., and Prakash, A., The Production of Particles in the Surface Waters of the Ocean with Particular Reference to the Sargasso Sea, Amer. Soc. Limno. and Oceanog., 18 (5), 719, 1973.CrossRefGoogle Scholar
  68. Shukla, S. S., Syers, J. K., Williams, J. D. H., Armstrong, D. E., and Harris, R. I., Sorption of Inorganic Phosphate by Lake Sediments, Proc. Soil Sci. Soc. Am., 35, 244, 1971.CrossRefGoogle Scholar
  69. Strom, R. N., Phosphorus Fractionation in Estuary and Marsh Sediments, Ph.D. Thesis, University of Delaware, Newark, Delaware, 1976.Google Scholar
  70. Stumm, W., Huang, C. P., and Jenkins, S. R., Specific Chemical Interaction Affecting the Stability of Dispersed Systems, Croatica Chemica Acta, 42, 223, 1970.Google Scholar
  71. Stumm, W., and O’Melia, C. R., Stoichiometry of Coagulation, Jour. Amer. waterworks Assoc., 60 (5), 514, 1968.Google Scholar
  72. Stumm, W., and Leckie, J. O., Phosphate Exchange with Sediments; Its Role in the Productivity of Surface Waters, Fifth International Water Poll. Res. Conf., Pergammon Press, Ltd., 1971.Google Scholar
  73. Stumm, W. and Morgan, J. J., Aquatic Chemistry, Chapter 9, John Wiley and Sons, New York, 1970.Google Scholar
  74. Taylor, D., National Distribution of Trace Metals in Sediments from a Coastal Environment, Tor Bay, England, Estuarine and Coastal Marine Sci., 2, 417, 1974.Google Scholar
  75. Tchobanoglous, G. and Eliassen, R., Filtration of Treated Sewage Effluent, Jour. Sanitary Eng. Div., Proceedings of Amer. Soc. Civil Eng., SA2, 243, 1970.Google Scholar
  76. Turekian, K. K., Oceans, Prentice-Hall, New York, 18, 1968.Google Scholar
  77. Wakamatsu, T. and Fuerstenau, D. W., The Effect of Hydrocarbon Chain Length of the Adsorption of Sulfonates at the Solid/Water Interface in Adsorption from Aqueous Solution, Adv. Chem. Ser. No. 79, A.C.S., 1968.Google Scholar
  78. Wayman, C. H., Adsorption on Clay Mineral Surface, in Principles and Applications of Water Chemistry (ed., Faust, S. D. and Hunter, J. V. ), 127, 1967.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • C. P. Huang
    • 1
  1. 1.University of DelawareUSA

Personalised recommendations