Acoustics and Gas in Sediments: Applied Research Laboratories (ARL) Experience

  • Loyd D. Hampton
  • Aubrey L. Anderson
Part of the Marine Science book series (MR, volume 3)


A discussion of the acoustical properties of saturated sediments and of gas bubbles in water is given as background to a discussion of the present state of knowledge of the acoustical properties of gas bearing sediments.

Four Applied Research Laboratories (ARL) programs are discussed, which have the commonality of gas in sediments, and which relate more or less directly to acoustic behavior. The first program is a series of laboratory measurements of the acoustic properties of constructed and controlled sediments. During these measurements, it became obvious that presence of gas dominated the acoustic behavior. The next program includes development of a chemical model of a gassy sediment and the design and construction of a diver operated sampler for collecting uncontaminated gas samples from a gassy sediment.

The third program is the development of a method for measuring sound speed during sediment coring. The cutting head of the coring barrel is modified to include two transducers and sound speed is recorded as the core barrel penetrates the sediment. The fourth program is an expansion of the sound speed measurement to include both attenuation (by amplitude measurement) and acoustic volume scattering (by use of an additional receiver at a right angle to the primary acoustic path). As the scattering mechanism is different for liquid saturated and gas bearing sediments, this technique should also be useful for indicating the presence of gas.


Bottom Sediment Sound Speed Acoustical Property Automatic Gain Control Acoustical Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akal, T., The relationship between the physical properties of underwater sediments that affect bottom reflection, Mar. Geol., 13, 251, 1972CrossRefGoogle Scholar
  2. Anderson, A. L., T. G. Muir, Jr., R. S. Adair, and W. H, Tolbert, A geoacoustic survey of the Brazos River, Part I: Environmental studies, Def. Res. Lab. Aooust. Rep. 294 (DRL-A-294), Appl. Res. Lab., The University of Texas at Austin, 1968.Google Scholar
  3. Anderson, A. L., R. J. Harwood, and R. T. Lovelace, Investigation of gas in bottom sediments, Tech. Rep. 70-28 (ARL-TR-70-28), Appl. Res. Lab., The University of Texas at Austin, 1971.Google Scholar
  4. Bennett, L. C., Jr., In situ measurements of acoustic absorption in unconsolidated sediments (Abstract), Trans. Am. Geophys. Union, 48, 144, 1967.Google Scholar
  5. Bennin, R. S., and C. S. Clay, Development of an in situ sediment velocimeter, Tech. Rep. 131, Hudson Lab., Columbia University, New York, 1967.Google Scholar
  6. Bobber, R. J., Acoustic characteristics of a Florida lake bottom, J. Acoust. Soc. Amer., 31, 250, 1959.CrossRefGoogle Scholar
  7. Brandt, H., Factors affecting compressional wave velocity in unconsolidated marine sand sediments, J. Acoust. Soc. Amer., 32, 171, 1960.CrossRefGoogle Scholar
  8. Briggs, H. B., J. B. Johnson, and W. P. Mason, Properties of liquids at high sound pressure, J. Acoust. Soc. Amer., 19, 664, 1947.CrossRefGoogle Scholar
  9. Brutsaert, W., and J. N. Luthin, The velocity of sound in soils near the surface as a function of the moisture content, J. Geophys. Res., 69, 643, 1964.CrossRefGoogle Scholar
  10. Buddruss, C. P., Experimentelle Untersuchungen zur Koharenz von Durchgangs und Ruckstreuschall einer Luftblasen-Wasser-Schicht, Acustica, 24, 147, 1971.Google Scholar
  11. Busby, J., and E. G. Richardson, The absorption of sound in sediments, Geophysics, 22, 821, 1957.CrossRefGoogle Scholar
  12. Cartensen, E. L., and L. L. Foldy, Propagation of sound through a liquid containing bubbles, J. Acoust. Soo. Amer., 19, 481, 1947.CrossRefGoogle Scholar
  13. Devin, C., Jr., Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water, J. Acoust. Soc. Amer., 31, 1654, 1959.CrossRefGoogle Scholar
  14. Eller, A. I., Damping constant of pulsating bubbles, J. Acoust. Soc. Amer., 47, 1469, 1970.CrossRefGoogle Scholar
  15. Faas, R. W., Analysis of the relationship between acoustic reflectivity and sediment porosity, Geophysics, 34, 546, 1969.CrossRefGoogle Scholar
  16. Fox, F. E., S. R. Curley, and G. S. Larson, Phase velocity and absorption measurements in water containing air bubbles, J. Acoust. Soc. Amer., 27, 534, 1955.CrossRefGoogle Scholar
  17. Garrels, R. M., and C. L. Christ, Solutions, Minerals, and Equilibria, p. 450, Harper and Row Publishers, New York, 1965.Google Scholar
  18. Gibson, F. W., Measurement of the effect of air bubbles on the speed of sound in water, J. Acoust. Soc. Amer., 48, 1195, 1970.CrossRefGoogle Scholar
  19. Grubnik, N. A., Investigation of the acoustic properties of underwater soil at high acoustic frequencies, Sov. Phys. Acoust., 6, 447, 1961.Google Scholar
  20. Hamilton, E. L., Sediment sound velocity measured in situ from bathyscaph TRIESTE, J. Geophys. Res., 68, 5991, 1963.Google Scholar
  21. Hamilton, E. L., Reflection coefficients and bottom losses at normal incidence computed from Pacific sediment properties, Geophysics, 35, 995, 1970.CrossRefGoogle Scholar
  22. Hamilton, E. L., Prediction of in situ acoustic and elastic properties of marine sediments, Geophysics, 36, 266, 1971.CrossRefGoogle Scholar
  23. Hamilton, E. L., Sound attenuation in marine sediments, Ocean Sciences Dept., Rep. NUC TP 281, Naval Undersea Center, San Diego, California, 1972.Google Scholar
  24. Hampton, L. D., Acoustic properties of sediments, Defense Res. Lab. Acoust. Rep. 254 (DRL-A-254), Defense Res. Lab., The University of Texas, 1966.Google Scholar
  25. Hampton, L. D., Acoustic properties of sediments, J. Acoust. Soc. Amer., 42, 882, 1967.CrossRefGoogle Scholar
  26. Hochstein, M. P., Seismic measurements in Suva Harbour (Fiji), N. Z. J. Geol. Geophys., 13, 269, 1970.CrossRefGoogle Scholar
  27. Houghton, G., Theory of bubble pulsation and cavitation, J. Acoust. Soc. Amer., 35, 1387, 1963.CrossRefGoogle Scholar
  28. Jones, J. L., C. B. Leslie, and L. E. Barton, Acoustic characteristics of a lake bottom, J. Acoust. Soc. Amer., 30, 142, 1958.CrossRefGoogle Scholar
  29. Jones, J. L., C. B. Leslie, and L. E. Barton, Acoustic characteristics of underwater bottoms, J. Acoust. Soc. Amer., 36, 154, 1964.CrossRefGoogle Scholar
  30. Karplus, H. B., The velocity of sound in a liquid containing gas bubbles, Armour Res. Found. Rep. COO-248, Illinois Inst, of Tech., 1958.Google Scholar
  31. Laird, D. T., and P. M. Kendig, Attenuation of sound in water containing air bubbles, J. Acoust. Soc. Amer., 24, 29, 1952.CrossRefGoogle Scholar
  32. Leslie, C. B., Normal incidence measurement of acoustic bottom constants, U. S. Naval Ord. Lab. NAVORD Rep. 6832, White Oak, Silver Spring, Maryland, 1960.Google Scholar
  33. Levin, F. K., The seismic properties of Lake Maracaibo, Geophysics, 27, 35, 1962.CrossRefGoogle Scholar
  34. Lewis, L. F., Speed of sound in unconsolidated sediments of Boston Harbor, Massachusetts, M. S. thesis, Mass. Inst, of Tech., Cambridge, Massachusetts, 1966.Google Scholar
  35. Lewis, L. F., V. A. Nacci, and J. J. Gallagher, In situ marine sediment probe and coring assembly, U. S. Naval Underwater Sound Lab. NUSL Rep. 10943 New London, Connecticut, 1970.Google Scholar
  36. Lewis, L. F., An investigation of ocean sediments using the deep ocean sediment probe, Ph.D. thesis, Univ. of Rhode Island, Kingston, 1971.Google Scholar
  37. Macpherson, J. D., Effect of gas bubbles on sound propagation in water, Proc. Phys. Soc. (London), B 70, 85, 1957.Google Scholar
  38. McCann, C., and D. M. McCann, The attenuation of compressional waves in marine sediments, Geophysics, 34, 882, 1969.CrossRefGoogle Scholar
  39. McLeroy, E. G., and A. DeLoach, Sound speed and attenuation, from 15 to 1500 kHz, measured in natural sea-floor sediments, J. Acoust. Soc. Amer., 443 1148, 1968.CrossRefGoogle Scholar
  40. Meyer, E., and E. Skudrzyk, Uber die akustischen Eigenschaften von Gasblasenschleiern in Wasser, Acustica, 3. 434, 1953.Google Scholar
  41. Minnaert, M., On musical air bubbles and the sounds of running water, Phil. Mag. 10, 235, 1933.Google Scholar
  42. Mole, L. A., J. L. Hunter, and J. M. Davenport, Scattering of sound by air bubbles in water, J. Acoust. Soc. Amer., 52, 837, 1972.CrossRefGoogle Scholar
  43. Muir, T. G., Jr., J. G. Pruitt, R. S. Adair, and J. E. Blue, A geoacoustic survey of the Brazos River, Part II: Ultrasonic attenuation studies, Defense Res. Lab. Aooust. Rep. 294 (DRL-A-294), Appl. Res. Lab., The University of Texas at Austin, 1968a.Google Scholar
  44. Muir, T. G., Jr., R. S. Adair, J. G. Pruitt, and J. G. Willette, A geoacoustic survey of the Brazos River, Part III: Reverberation studies, Defense Res. Lab. Aooust. Rep. 294 (DRL-A-294), Appl. Res. Lab., The University of Texas at Austin, 1968b.Google Scholar
  45. Muir, T. G., Experimental capabilities of the ARL sediment tank facility in the study of buried object detection, Appl. Res. Lab. Teoh. Memo. 72-32 (ARL-TM-72-32), The University of Texas at Austin, 1972.Google Scholar
  46. Nolle, A. W., W. A. Hoyer, J. F. Mifsud, W. R. Runyan, and M. B. Ward, Acoustical properties of water-filled sand, J. Acoust. Soc. Amer., 35, 1394, 1963.CrossRefGoogle Scholar
  47. Nyborg, W. L., I. Rudnick, and H. K. Schilling, Experiments on acoustic absorption in sand and soil, J. Acoust. Soc. Amer., 22, 422, 1950.CrossRefGoogle Scholar
  48. Olson, F. C. W., and B. Wilder, Gases in bottom sediments, Bull. Marine Sol. Gulf and Caribbean, 11, 207, 1961.Google Scholar
  49. Ruff, G. A., Acoustic characteristics of Black Moshannon Lake bottom, J. Acoust. Soc. Amer., 42, 524, 1967.CrossRefGoogle Scholar
  50. Schirmer, F., Schallaus breitung im Schlick, Deut. Eydrogr. Z., 23 (1), 24, 1970.CrossRefGoogle Scholar
  51. Schubel, J. R., Gas bubbles and the acoustically impenetrable, or turbid, character of some estuarine sediments, in Natural Gases in Marine Sediments, edited by I. R. Kaplan, pp. 275–298, Plenum Press, New York, 1974.Google Scholar
  52. Shima, A., The natural frequency of a bubble oscillating in a viscous compressible liquid, J. Basic Eng. (Trans. ASME), 555, 1970.Google Scholar
  53. Shumway, G., Sound speed and absorption studies of marine sediments by a resonance method, Part I, Geophysics, 25, 451, 1960.Google Scholar
  54. Silberman, E., Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes, J. Acoust. Soc. Amer., 29, 925, 1957.CrossRefGoogle Scholar
  55. Stoll, R. D., J. Ewing, and G. M. Bryan, Anomalous wave velocities in sediments containing gas hydrates, J. Geophys. Res., 76, 2090, 1971.CrossRefGoogle Scholar
  56. Strasberg, M., Gas bubbles as sources of sound in liquids, J. Acoust. Soo. Amer., 28, 20, 1956.CrossRefGoogle Scholar
  57. Thorstenson, D. C., Equilibrium distribution of small organic molecules in natural waters, Ph.D. thesis, Northwestern University, Chicago, 1969.Google Scholar
  58. Ulonska, A., Versuche zur Messung der Schallgeschwindig keit und Schalldampfung im Sediment in situ, Deut. Hydrogr. Z., 21 (2), 49, 1968.CrossRefGoogle Scholar
  59. Urick, R. J., The absorption of sound in suspensions of irregular Particles, J. Acoust. Soc. Amer. 20, 283, 1948.CrossRefGoogle Scholar
  60. Werner, A. E., Gases from sediments in polluted coastal waters, Pulp and Paper Magazine of Canada, 69, 127, 1968.Google Scholar
  61. Wood, A. B., A Textbook of Sound., pp. 360–363, New York, 1955.Google Scholar
  62. Wood, A. B., and D. E. Weston, The propagation of sound in mud, Acustica, 14, 156, 1964.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Loyd D. Hampton
    • 1
  • Aubrey L. Anderson
    • 1
  1. 1.Applied Research LaboratoriesThe University of Texas at AustinAustinUSA

Personalised recommendations