The Nature and Occurrence of Clathrate Hydrates

  • Stanley L. Miller
Part of the Marine Science book series (MR, volume 3)


Clathrate hydrates are crystalline compounds in which an expanded ice lattice forms cages that contain gas molecules. There are two principal gas hydrate structures. Structure I, with a 12 Å cubic unit cell, contains 46 water molecules and 8 cages of two types, giving an ideal formula (for CH4) of CH4·5-3/4H2O. The actual formula contains somewhat more water as the cages are not completely filled. Examples of gases that form Structure I hydrates are, ethane, N2, O2, Ar, Xe, CH3CI, H2S. Structure II, with a 17 Å cubic unit cell, contains 136 water molecules, and 8 large cages and 16 small cages. This gives an ideal formula of, for example, CHCl3 17H2O. Other molecules that form a Structure II hydrate include propane, ethyl chloride, acetone, and tetrahydrofuran. The conditions of pressure and temperature for hydrate formation are discussed. The statistical-mechanical treatment of hydrate stabilities shows that the cages are not completely occupied; thus the clathrate hydrates are non-stoichiometric compounds.

Methane hydrate is likely to be a major constituent of the planets Uranus and Neptune. The hydrates of ammonia (2NH3 H2O, NH3 H2O, and NH32H2O), which are stoichiometric compounds, are also likely to occur on these planets. Comets are likely to contain similar hydrates. The ice cap of Mars, which is mostly solid CO2, should contain CO2 hydrate. On the earth, a hydrate of air [(N2, O2) 6H2O] occurs in the Antarctic ice cap. Methane hydrate has been reported to be present in some oceanic sediments based on sound- velocity data.

The conditions for the formation of methane hydrate from pure water and methane gas are given, and the hydrate forming conditions are calculated when the hydrostatic pressure is greater than the dissociation pressure of the hydrate. The amount of methane dissolved in the water is calculated under these conditions, and it is clear that bubbles of methane gas need not be present in the water for the hydrate to be stable. These figures can be applied to the stability of methane hydrate in oceanic sediments by correcting for the presence of the dissolved salts. The effect of other hydrate forming gases (i. e., H2S) on the stability of methane hydrate is also calculated.


Methane Hydrate Ideal Formula Dissociation Pressure Quadruple Point Clathrate Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barduhn, A. J., H. E. Towlson, and Y. C. Hu, The properties of some new gas hydrates and their use in demineralizing sea water, AIChE, J., 8, 176, 1962.CrossRefGoogle Scholar
  2. Barduhn, A. J., Desalination by crystallization processes, Chem. Eng. Prog., 63, 98, 1967.Google Scholar
  3. Barrer, R. M., and W. I. Stuart, Nonstoichiometric clathrate compounds of water, Proc. Roy. Soc., London, A243, 172, 1957.CrossRefGoogle Scholar
  4. Bhatnagar, V. M., Clathrate Compounds, S. Chand and Co., New Delhi, 1968.Google Scholar
  5. Chan, J. P., and W. F. Giauque, The entropy of NH3-2H20. Heat Capacity from 15 to 300°K, J. Phys. Chem., 68, 3053, 1964.CrossRefGoogle Scholar
  6. Claussen, W. F., Suggested structures of water on inert gas hydrates, J. Chem. Phys., 19, 159, 1951a.Google Scholar
  7. Claussen, W. F., Erratum: suggested structures of water on inert gas hydrates, J. Chem. Phys., 19, 662, 1951b.CrossRefGoogle Scholar
  8. Claussen, W. F., and M. F. Polglase, Solubilities and structures in aqueous aliphatic hydrocarbon solutions, J. Amer. Chem. Soc., 74, 4817, 1952.CrossRefGoogle Scholar
  9. Davidson, D. W., Clathrate hydrates, in Water: A Comprehensive Treatise, edited by F. Franks, Plenum Press, New York (in press, vol. 5), 1973.Google Scholar
  10. Davy H., On some of the combinations of oxy-muriatic gas and oxygen, and on the chemical relations of the principals to inflammable bodies, Phil. Trans. Roy. Soc., London, 101, 1, 1811.Google Scholar
  11. Deaton, W. M., and E. M. Frost, Jr., Gas hydrates and their relation to the operation of natural-gas pipe lines, U.S. Bureau of Mines Mono., No. 8, 1946.Google Scholar
  12. Delsemme, A. H., and D. C. Miller, Physico-chemical phenomena in comets-II. Gas adsorption in snows of the nucleus, Planet. Space Sci., 18, 717, 1970.CrossRefGoogle Scholar
  13. Delsemme, A. H., and P. Swings, Hydrates de gas dans les noyaux cométaires et les grains interstellaires, Ann. Astrophys., 15, 1, 1952.Google Scholar
  14. Delsemme, A. H., and A. Wegner, Physico-chemical phenomena in comets-I. Experimental study of snows in a cometary environment, Planet. Space Sci., 18, 709, 1970.CrossRefGoogle Scholar
  15. Din, F. (ed.), Thermodynamic Functions of Gases, vol. 3, pp. 64–67, Butterworths, London, 1961.Google Scholar
  16. Donath, W. E., Purification of salt water, U.S. Patent 2,904,511, 1959, Chem. Abst., 54, 1779, 1960.Google Scholar
  17. Enns, T., P. F. Scholander, and E. D. Bradstreet, Effect of hydrostatic pressure on gases dissolved in water, J. Phys. Chem., 69, 389, 1965.CrossRefGoogle Scholar
  18. Frank. H. S., The structure of ordinary water, Science, 169, 635, 1970.CrossRefGoogle Scholar
  19. Frank, H. S., and M. W. Evans, Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes, J. Chem. Phys., 15, 507, 1945.CrossRefGoogle Scholar
  20. Frost, E. M., Jr., and W. M. Deaton, Gas hydrate composition and equilibrium data, Oil Gas J. 45 (July 27), 170, 1946.Google Scholar
  21. Glew, D. N., The gas hydrate of bromochlorodifluoromethane, Can. J. Chem., 38, 208, 1960.CrossRefGoogle Scholar
  22. Glew, D. N., Dehydration of solutions, U.S. Patent 3,058,832, 1962, Chem. Abst., 57, 16340, 1962a.Google Scholar
  23. Glew, D. N., Aqueous solubility and the gas-hydrates. The methane- water system, J. Phys. Chem., 663, 605, 1962b.CrossRefGoogle Scholar
  24. Glew, D. N., Concentration of aqueous solutions through hydrate formation, French Patent 1,470,548., Chem. Abst., 673, 74956, 1967.Google Scholar
  25. Goldberg, P., Free radicals and reactive molecules in clathrate cavities, Science, 142, 378, 1963.CrossRefGoogle Scholar
  26. Gow, A. J., H. T. Ueda, and D. E. Garfield, Antarctic ice sheet: Preliminary results of first core hole to bedrock, Science, 161. 1011, 1968.CrossRefGoogle Scholar
  27. Hafemann, D. R., and S. L. Miller, The clathrate hydrates of cyclo-propane, J. Phys. Chem., 73, 1392, 1969a.CrossRefGoogle Scholar
  28. Hafemann, D. R., and S. L. Miller, The deuteriohydrates of cyclo-propane, J. Phys. Chem., 73, 1398, 1969b.CrossRefGoogle Scholar
  29. Hagen, M., Clathrate Inclusion Compounds, Reinhold, New York, 1962.Google Scholar
  30. Hammerschmidt, E. G., Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem., 26, 851, 1934.CrossRefGoogle Scholar
  31. Hess, M., and G. E. Jones, Jr., Process and apparatus for separating water from an aqueous system, U.S. Patent 3,119,772, 1964, Chem. Abst., 60, 11750, 1964.Google Scholar
  32. Hildebrand, D. L., and W. F. Giauque, Ammonium oxide and ammonium hydroxide. Heat capacities and thermodynamic properties from 15 to 300°K, J. Amer. Chem. Soc., 75, 2811, 1953.CrossRefGoogle Scholar
  33. Jeffrey, G. A., and R. K. McMullan, The clathrate hydrates, Prog. Inorg. Chem., 8, 43, 1967.CrossRefGoogle Scholar
  34. Jhaveri, J., and D. E. Robinson, Hydrates in the methane-nitrogen system, Can. J. Chem. Eng., 43, 75, 1965.CrossRefGoogle Scholar
  35. Kamb, B., A clathrate crystalline form of silica, Science, 148, 232, 1965a.CrossRefGoogle Scholar
  36. Kamb, B., Structure of ice VI, Science, 150, 205, 1965b.CrossRefGoogle Scholar
  37. Kamb, B., and B. L. Davis, Ice VII, the densest form of ice, Proc. Eat. Acad. Sci. U.S., 52, 1433, 1964.CrossRefGoogle Scholar
  38. Kauzmann, W., Some factors in the interpretation of protein denaturation, Advan. Protein Chem., 14, 1, 1959.CrossRefGoogle Scholar
  39. Kavanau, J. L., Water and Solute Interactions, Holden-Day, San Francisco, 1964.Google Scholar
  40. Kingery, W. D. (ed.), lce and Snow, MIT Press, Cambridge, Mass., 1963.Google Scholar
  41. Kliore, A., G. Fjeldbo, and B. L. Seidel, Mariners 6 and 7: Radio occultation measurements of the atmosphere of Mars, Science, 166, 1393, 1969.CrossRefGoogle Scholar
  42. Klotz, I. M., Protein hydration and behavior, Science, 128, 815, 1958.CrossRefGoogle Scholar
  43. Klotz, I. M., Noncovalent bonds in protein structure, Brookhaven Symp. Biol., 13, 25, 1960.Google Scholar
  44. Krichevsky, I. R., and J. S. Kasarnovsky, Thermodynamical calculations of solubilities of nitrogen and hydrogen in water at high pressures, J. Amer. Chem. Soc., 57, 2168, 1935.CrossRefGoogle Scholar
  45. Lewis, J. S., The clouds of Jupiter and the NH3-H2O and NH3-H2S system, Icarus, 10, 365, 1969,Google Scholar
  46. Mak, T. C., and R. K. McMullan, Polyhedral clathrate hydrates X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide, J. Chem. Phys., 42, 2732, 1965.CrossRefGoogle Scholar
  47. Makogon, Yu. F., F. A. Trebin, A. A. Trofimuk, V. P. Tsarev, and N. V. Cherskiy, Detection of a pool of natural gas in a solid (hydrated gas) state, Dokl. Akad. Nauk SSSR (Earth Sci.), English Transi., 196, 203, 1971.Google Scholar
  48. Mandelcorn, L., Clathrates, Chem. Rev., 59, 827, 1959.CrossRefGoogle Scholar
  49. Marshall, D. R., S. Saito, and R. Kobayashi, Hydrates at high pres-sures: Part I. Methane-water, argon-water, and nitrogen-water systems, AIChE J., 10, 202, 1964.CrossRefGoogle Scholar
  50. McKoy, V., and O. Sinanoglu, Theory of dissociation pressures of some gas hydrates, J. Chem. Phys., 38, 2946, 1963.CrossRefGoogle Scholar
  51. Miller, S. L., The occurrence of gas hydrates in the solar system, Proc. Nat. Acad. Sci. U.S., 47, 1798, 1961a.CrossRefGoogle Scholar
  52. Miller, S. L., A theory of gaseous anesthetics, Proc. Nat. Acad. Sci. U.S., 47, 1515, 1961b.CrossRefGoogle Scholar
  53. Miller, S. L., Clathrate hydrates of air in Antarctic ice, Science, 165, 489, 1969.CrossRefGoogle Scholar
  54. Miller, S. L., and W. D. Smythe, Carbon dioxide clathrate in the Martian ice cap, Science, 170, 531, 1970.CrossRefGoogle Scholar
  55. Neugebauer, G., G. Munch, S. C. Chase, Jr., H. Hatzenbeler, E. Miner, and D. Schofield, Mariner 1969: Preliminary results of the infrared radiometer experiment, Science, 1966, 98, 1969.Google Scholar
  56. Neugebauer, G., G. Munch, H. Kieffer, S. C. Chase, Jr., and E. Miner, Mariner 1969 infrared radiometer results: Temperatures and thermal properties of the Martian surface, Astron. J., 76, 719, 1971.CrossRefGoogle Scholar
  57. New York Times (Financial Section), U.S.-Soviet Gas Deal?, by Gene Smith, Jan. 2, p. 1, 1972.Google Scholar
  58. Nye, J. F., The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment, Proc. Roy. Soc., London, A219, 477, 1953.CrossRefGoogle Scholar
  59. Olovsson, I., and D. H. Templeton, The crystal structure of ammonia monohydrate, Acta Cryst., 12, 827, 1959.CrossRefGoogle Scholar
  60. Ottawa Citizen, The, Large solid gas deposits in the polar regions, by I. Ilyinskaya, Oct. 16, p. 18, 1971.Google Scholar
  61. Otto, F. D., and D. B. Robinson, A study of hydrates in the methane- propylene-water system, AIChE J., 6, 602, 1960.CrossRefGoogle Scholar
  62. Palin, D. E., and H. M. Powell, Hydrogen bond linking of quinol molecules, Nature, 156, 334, 1945.CrossRefGoogle Scholar
  63. Palin, D. E., and H. M. Powell, The structure of molecular com-pounds: Part V. The clathrate compounds of quinol and methanol, J. Chem. Soc. (118), 571, 1948a.CrossRefGoogle Scholar
  64. Palin, D. C., and H. M. Powell, The structure of molecular compounds: Part VI. The ß-type clathrate compounds of quinol, J. Chem. Soc. (163), 815, 1948b.CrossRefGoogle Scholar
  65. Parker, A., Potable water from sea water, Nature, 149, 184, 1942.CrossRefGoogle Scholar
  66. Pauling, L., and R. E. Marsh, The structure of chlorine hydrate, Proc. Nat. Acad. Sci. U.S., 38, 112, 1952.CrossRefGoogle Scholar
  67. Powell, H. M., Clathrates, in Non-Stoiohiometric Compounds, edited by L. Mandelcorn, p. 438, Academic Press, New York, 1964.Google Scholar
  68. Siemons, W. J., and D. H. Templeton, The crystal structure of ammonium oxide, Acta Crystallogr., 7, 194, 1954.CrossRefGoogle Scholar
  69. Stackelberg, M. von, Feste gashydrate, Naturwissenschaften, 36, 327, 1949a.CrossRefGoogle Scholar
  70. Stackelberg, M. von, Feste gashydrate, Naturwissenschaften, 36, 359, 1949b.CrossRefGoogle Scholar
  71. Stackelberg, M. von, and H. Frübuss, Feste Gashydrate. IV. Doppel-hydrate, Z. Elektrochem., 58, 99, 1954.Google Scholar
  72. Stackelberg, M. von, and W. Jahns, Feste gashydrate. IV. Die Gitteraufweitungsarbeit, Z. Elektrochem., 58, 162, 1954.Google Scholar
  73. Stackelberg, M. von, and W. Meinhold, Feste gashydrate III. Misc-hydrate, Z. Elektrochem., 58, 40, 1954.Google Scholar
  74. Stackelberg, M. von, and H. R. Müller, On the structure of gas hydrates, J. Chem. Phys., 19, 1319, 1951.CrossRefGoogle Scholar
  75. Stackelberg, M. von, and H. R. Müller, Feste gashydrate II. Struktur und Raumchemie, Z. Elektrochem., 58, 25, 1954.Google Scholar
  76. Stoll, R. D., J. Ewing, and G. M. Bryan, Anomalous wave velocities in sediments containing gas hydrates, J. Geophys. Res, 76, 2090, 1971.CrossRefGoogle Scholar
  77. Takenouchi, S., and G. C. Kennedy, Dissociation pressures of the phase CO2-5-3/4H2O, J. Geol., 73, 383, 1965.Google Scholar
  78. van der Waals, J. H., and J. C. Platteeuw, Clathrate solutions, Advan. Chem. Phys, 2, 1, 1959.CrossRefGoogle Scholar
  79. Weiss, R. F., The solubility of nitrogen, oxygen and argon in water and seawater, Deep-Sea Res., 17, 721, 1970.Google Scholar
  80. Wetlaufer, D. B., S. K. Malik, L. Stoller, and R. L. Coffin, Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies, J. Amer. Chem. Soc., 86, 508, 1964.CrossRefGoogle Scholar
  81. Whipple, F. L., A comet model. II. Physical relations for comets and meteors, Astrophys. J., 111, 464, 1951.CrossRefGoogle Scholar
  82. Williams, V. C., Hydrate-forming saline-water conversion project, U.S. Patent 2,974,102, 1961, Chem. Abst, 55, 17964, 1961.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Stanley L. Miller
    • 1
  1. 1.Department of ChemistryUniversity of California at San DiegoLa JollaUSA

Personalised recommendations