Precipitation and Cementation of Deep-Sea Carbonate Sediments

  • John D. Milliman
Part of the Marine Science book series (MR, volume 2)


Inorganic precipitation of calcium carbonate, both as limestone cement and unconsolidated lutite, occurs in several types of deep-sea environments. While such carbonates account for only a small part of the total calcium carbonate budget, they appear to be more important quantitatively than shallow-water precipitates. Recognizing and understanding the processes of precipitation and cementation of carbonates can give added insights into deep-sea carbonate sedimentation prior to the evolution of calcareous nannoplankton and Zooplankton.

Carbonate cementation can affect the general physical (and engineering) properties of marine sediments. Sudden variations in such properties as shear strength may reflect cementation of that sediment. Techniques for recognizing small (but perhaps critically important) quantities of carbonate cement in deep-sea sediments should be developed.


Calcium Carbonate Carbonate Sediment Planktonic Foraminifera Precipitate Calcium Carbonate Carbonate Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. F., and N. Schneidermann, Isotope relationships in pelagic limestones from central Caribbean, Leg 15, Deep-Sea Drilling Project (abstract), Trans. Am. Geophys. Union, 53, 555, 1972.CrossRefGoogle Scholar
  2. Bathurst, R. G. C., Carbonate Sediments and their Diagenesis, Elsevier Publ. Co., Amsterdam, 1971.Google Scholar
  3. Berggren, W. A., and A. Boersma, Late Pleistocene and Holocene planktonic foraminifera from the Red Sea, in Hot Brines and Recent Heavy Metal Deposits in the Red Sea, edited by E. T. Degens and D. A. Ross, pp. 282–298, Springer-Verlag, N. Y., 1969.Google Scholar
  4. Boggild, O. B., The deposits of the sea bottom, Danish Oceanographic Expedition, 1908–1910, Rept. 1, 255-269, 1912.Google Scholar
  5. Bukry, D., S. A. Kling, M. K. Horn, and F. T. Manheim, Geological significance of coccoliths in fine-grained carbonate bands of post-glacial Black Sea sediments, Nature, 226, 156–158, 1970.CrossRefGoogle Scholar
  6. Caspers, H., Black Sea and Sea of Azov, in Treatise on Mar. Ecol., edited by J. W. Hedgpeth, pp. 801-890, Geol. Soc. Am. Mem. 67, Boulder, Colo., 1957.Google Scholar
  7. Cifelli, R., V. T. Bowen, and R. Siever, Cemented foraminiferal oozes from the Mid-Atlantic Ridge, J. Mar. Res., 26, 105–109, 1966.Google Scholar
  8. Davies, T. A., and P. R. Supko, Oceanic sediments and their diagenesis: some examples from deep-sea drilling, J. Sediment. Petrol., 43, 381–390, 1973.Google Scholar
  9. Deuser, W. G., and E. T. Degens, O18/O16 and C13/C12 ratios of fossils from the Hot Brine deep area of the central Red Sea, in Hot Brines and Recent Heavy Metal Deposits in the Red Sea, edited by E. T. Degens and D. A. Ross, pp. 336–347, Springer-Verlag, N. Y., 1969.Google Scholar
  10. DeWindt, J., and F. Berwerth, Untersuchung von Grundproben der I., II, and IV Reise von S.M. POLA in den Jahren 1890, 1892 and 1893, Denkschrift Akademie Wissenschaft Wien, Mathematik und Naturwissenschaften, 74, 285–294, 1904.Google Scholar
  11. Emiliani, C., Temperatures of Pacific bottom waters and polar superficial waters during the Tertiary, Science, 119, 853–855, 1954.CrossRefGoogle Scholar
  12. Field, M. F., and O. H. Pilkey, Lithification of deep-sea sediments by pyrite, Nature, 226, 836–837, 1970.CrossRefGoogle Scholar
  13. Fischer, A. G., and R. E. Garrison, Carbonate lithification on the sea floor, J. Geol., 75, 488–497, 1967.CrossRefGoogle Scholar
  14. Freidman, G. M., Early diagenesis and lithification in carbonate sediments, J. Sediment. Petrol., 34, 777–813, 1964.Google Scholar
  15. Friedman, G. M., Occurrence and stability relationships of aragonite high-magnesian calcite, and low-magnesian calcite under deep-sea conditions, Bull. Geol. Soc. Am., 76, 1191–1196, 1965.CrossRefGoogle Scholar
  16. Gevirtz, J. L., and G. M. Friedman, Deep-sea carbonate sediments of the Red Sea and their implications on marine lithification, J. Sediment. Petrol., 36, 143–151, 1966.Google Scholar
  17. Ginsburg, R. N., Early diagenesis and lithification of shallow-water carbonate sediments in South Florida, in Regional Aspects of Carbonate Sedimentation, edited by R. J. LeBlanc and J. G. Breeding, pp. 80-100, Soc. Econ. Paleontol. and Mineral. Spec. Publ. 5, Norman, Okla., 1957.Google Scholar
  18. Glover, E. D., and L. C. Pray, High-magnesium calcite and aragonite cementation within modern subtidal carbonate sediment grains, in Carbonate Cements, edited by O. P. Bricker, pp. 80-87, Johns Hopkins Univ. Studies in Geol., No. 19, Baltimore, 1971.Google Scholar
  19. Gomberg, D. N., and E. Bonatti, High-magnesian calcite: leaching of magnesium in the deep sea, Science, 168, 1451–1453, 1970.CrossRefGoogle Scholar
  20. Herman, Y. R., Etudes des sediments Quaternaires de la Mer Rouge, Ph.D. thesis, Univ. of Paris, pp. 341-415, Masson & Cie Editeurs, Paris, 1965.Google Scholar
  21. Joides, Initial Reports of the Deep-Sea Drilling Project, Hoboken, N. J. to Dakar, Senegal, 2, U. S. Govt. Printing Office, Washington, D. C., 1970a.Google Scholar
  22. Joides, Initial Reports of the Deep-Sea Drilling Project, Rio de Janeiro, Brazil to San Cristobal, Panama, 4, U. S. Govt. Printing Office, Washington, D. C., 1970b.Google Scholar
  23. Kuenen, P. H., Marine Geology, John Wiley and Sons, Inc., N. Y., 1950.Google Scholar
  24. Marlowe, J. I., Dolomite, phosphorite, and carbonate diagenesis on a Caribbean Seamount, J. Sediment. Petrol., 41, 809–827, 1971.Google Scholar
  25. McFarlin, P. F., Aragonite vein fillings in marine manganese nodules, J. Sediment. Petrol., 37, 68–72, 1967.Google Scholar
  26. Milliman, J. D., Submarine lithification of carbonate sediments, Science, 153, 994–997, 1966.CrossRefGoogle Scholar
  27. Milliman, J. D., Atlantic continental shelf and slope of the United States, petrology of the sand fraction-northern New Jersey to southern Florida, U. S. Geol. Survey Prof. Paper 529-J, 1972.Google Scholar
  28. Milliman, J. D., Marine Carbonates, Springer-Verlag, Heidelberg, 375 p., 1974.Google Scholar
  29. Milliman, J. D., D. A. Ross, and T. H. Ku, Precipitation and lithification of deep-sea carbonates in the Red Sea, J. Sediment. Petrol., 39, 724–736, 1969.Google Scholar
  30. Milliman, J. D., and J. Müller, Precipitation and lithification of magnesian calcite in the deep-sea sediments of the eastern Mediterranean Sea, Sedimentology, 20, 29–46, 1973.CrossRefGoogle Scholar
  31. Murray, J., and J. Hjort, The Depths of the Ocean, MacMillan and Co., London, 1912.Google Scholar
  32. Natterer, K., Chemische unterscuhungen im oestlichen Mittalmeer, i. Reise S.M. Schiffes POLA in Jahre 1890, Denkschrift Akademie Wissenschaft Wien, Mathematik und Naturwissenschaften, 61, 23–64, 1894.Google Scholar
  33. Natterer, K., Expedition S.M. Schiff POLA in das Rote Meer, Nördliche Hälffe (October 1895–March 1896), Denkschrift Akademie Wissenschaft Wien, Mathematik und Naturwissenschaften, 65, 445–572, 1898.Google Scholar
  34. Neumann, A. C., G. H. Keller, and J. W. Kofoed, “Lithoherms” in the Straits of Florida (abstract), Geol. Soc. Am., Abstr. with Prog., 4, 611, 1972.Google Scholar
  35. Olausson, E., Evidence of climatic changes in North Atlantic deep-sea cores, with remarks on isotopic paleotemperature analysis, in Progress in Oceanography, 3, edited by M. Sears, pp. 221–252, Pergamon Press, Oxford, 1965.Google Scholar
  36. Pilkey, O. H., and B. W. Blackwelder, Mineralogy of the sand size carbonate fraction of some recent marine terrigenous and carbonate sediments, J. Sediment. Petrol., 38, 799–810, 1968.Google Scholar
  37. Pimm, A. C., R. E. Garrison, and R. E. Boyce, Sedimentology synthesis: lithology, chemistry and physical properties of sediments in the northwestern Pacific Ocean, in Initial Reports, Deep-Sea Drilling Project, 6, pp. 1131-1252, U. S. Govt. Printing Office, Washington, D. C., 1971.Google Scholar
  38. Saito, T., M. Ewing, and L. H. Burckle, Tertiary sediment from the Mid-Atlantic Ridge, Science, 151, 1075–1079, 1966.CrossRefGoogle Scholar
  39. Schmidt, V., Facies, diagenesis, and related reservoir properties in the Gigas Beds (Upper Jurassic), Northwestern Germany, in Dolomitization and Limestone Diagenesis, edited by L. C. Pray and R. C. Maurray, pp. 124-168, Soc. Econ. Paleontol. and Mineral. Spec. Publ. 13, Norman, Okla., 1965.Google Scholar
  40. Stetson, T. R., E. Uchupi, and J. D. Milliman, Surface and subsurface morphology of two small areas of the Blake Plateau, Trans. Gulf. Coast Assoc. Geol. Soc, 19, 131–142, 1969.Google Scholar
  41. Thompson, G., A geochemical study of some lithified carbonate sediments from the deep sea, Geochim. Cosmochim. Acta, 36, 1237–1254, 1972.CrossRefGoogle Scholar
  42. Thompson, G., V. T. Bowen, W. G. Melson, and R. Cifelli, Lithified carbonates from the deep sea off the Equatorial Atlantic, J. Sediment. Petrol., 38, 1305–1312, 1968.Google Scholar
  43. Wise, S. W., and K. R. Kelts, Submarine lithification of middle Tertiary chalks in the South Pacific Ocean basin (abstract), in Prog. 8th Intern. Sediment. Cong., p. 110, Heidelberg, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • John D. Milliman
    • 1
  1. 1.Woods Hole Oceanographic InstitutionUSA

Personalised recommendations