The Effects of the Benthic Fauna on the Physical Properties of Deep-Sea Sediments

  • Gilbert T. Rowe
Part of the Marine Science book series (MR, volume 2)


Benthic invertebrates are known to rework and modify sediments mechanically through such activities as burrowing, tube building and deposit feeding. The results are a variety of identifiable structures which are abundant both at the sediment-water interface and preserved in deeper layers. These “Lebensspuren” are always common in sediments, except where sedimentation rates or other physical processes have obscured them.

In the deep sea, invertebrate assemblages are depauperate in both abundance and biomass, and although the diversity of the communities is relatively high, metabolism appears to be extremely slow. These structural and functional characters of the communities might imply that faunal effects on sediments would be proportionately lower in deep water, but no evidence supports this. In deep depauperate regions where sedimentation rate and organic carbon are low, the fauna appears to have accentuated effects. Bioturbation may be the catalyst for most deep-sea sediment erosion. In anomalous deep deposits where organic-rich material has accumulated, either naturally or from man, animal abundance and activities are measurably increased. Time-lapse photography indicates the bottom fauna has pronounced catalytic effects on sediment erosion by currents at the head of Hudson Submarine Canyon.


Particulate Organic Carbon Benthic Fauna Decapod Crustacean Deposit Feeder Fiddler Crab 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansell, A., and E. Trueman, The mechanisms of burrowing in the anemone, Peachia hastata Gosse, J. Exp. Mar. Bio. Ecol., 2, 124–134, 1968.CrossRefGoogle Scholar
  2. Barnes, R. D., Tube-building and feeding in chaetopterid poly-chaetes, Biol. Bull., 129, 217–233, 1965.CrossRefGoogle Scholar
  3. Belyaev, G. M., Bottom fauna of the ultra-abyssal depths of the world ocean, Akad. Nauk SSSR Tr. Inst. Okeanol., 591, 1–248, 1966.Google Scholar
  4. Bennett, I., The mud lobster, Aust. Mus. Mag. (Nat. Hist.), 16, 22–25, 1968.Google Scholar
  5. Berger, W. H., and G. R. Heath, Vertical mixing in pelagic sediments, J. Mar. Res., 26, 134–143, 1968.Google Scholar
  6. Bourne, D. W., and B. C. Heezen, A wandering enteropneust from the abyssal Pacific, and the distribution of “spiral” tracks on the sea floor, Science, 150, 60–63, 1965.CrossRefGoogle Scholar
  7. Brongersma-Sanders, M., Mass mortality in the sea, in Treatise in Mar. Ecol. and Paleoecol., edited by J. Hedgpeth, pp. 941-1010, Memoir 67, U. S. Geol. Soc, 1957.Google Scholar
  8. Burger, J. A., G. V. de Klein, and J. E. Sanders, A field technique for making epoxy relief-peels in sandy sediments saturated with salt water, J. Sediment. Petrol., 39, 338–341, 1969.Google Scholar
  9. Chakrabarti, A., Beach structures produced by crab pellets, Sedimentology, 18, 129–134, 1972.CrossRefGoogle Scholar
  10. Chapman, C. J., and A. L. Rice, Some direct observations on the ecology and behavior of the Norway lobster Nephrops norvegicus, Mar. Biol., 10, 321–329, 1971.CrossRefGoogle Scholar
  11. Clarke, R. H., Burrow frequency in abyssal sediments, Deep-Sea Res., 15, 397–400, 1968.Google Scholar
  12. Crane, J., Eastern Pacific expeditions of the New York Zoological Society, XXVI. Crabs of the genus Uca from the west coast of Central America, Zoologica, 26, 145–207, 1941.Google Scholar
  13. Crane, J., Crabs of the genus Uca from Venezuela, Zoologica, 28, 33–44, 1943.Google Scholar
  14. Crane, J., Eastern Pacific expeditions of the New York Zoological Society. XXXVIII. Intertidal brachygnathus crabs from the west coast of tropical America, Zoologica, 32, 69–95, 1947.Google Scholar
  15. Crane, J., Aspects of social behavior in fiddler crabs, with special reference to Uca maracoani (Latrille), Zoologica, 43, 113–130, 1958.Google Scholar
  16. Crichton, O. W., Marsh crab, Estuar. Bull., 5, 3–10, 1960.Google Scholar
  17. Crozier, W. J., The amount of bottom material ingested by holothurians (Stichopus), J. Exp. Zool., 26, 379–389, 1918.CrossRefGoogle Scholar
  18. Cullen, D., Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature, 242, 323–324, 1973.CrossRefGoogle Scholar
  19. Dayton, P., and R. Hessler, Role of biological disturbance in maintaining diversity in the deep sea, Deep-Sea Res., 19, 199–208, 1972.Google Scholar
  20. Dembowski, J. B., Notes on the behavior of the fiddler crab, Biol. Bull, 50, 179–201, 1926a.CrossRefGoogle Scholar
  21. Dembowski, W. S., Study on the habits of the crab Dromia vulgaris m.e., Biol. Bull., 50, 179–201, 1926b.CrossRefGoogle Scholar
  22. Dillon, W. P., and H. B. Zimmerman, Erosion by biological activity in two New England submarine canyons, J. Sediment. Petrol., 40, 542–547, 1970.Google Scholar
  23. Dybern, B. I., and T. Hoiseter, On the burrowing behavior of Nephrops norvegicus (L), Sarsia, 21, 49–55, 1965.Google Scholar
  24. Emery, K. O., Some surface features of marine sediment made by animals, J. Sediment. Petrol., 23, 202–204, 1953.Google Scholar
  25. Emery, K. O., and D. A. Ross, Topography and sediments of a small area of the continental slope south of Martha’s Vineyard, Deep-Sea Res., 15, 415–422, 1969.Google Scholar
  26. Engle, R., An account of the burrowing behavior of the amphipod Corophium arenarium Crawford, Ann. Mag. Natur. Hist., 9, 309–317, 1966.CrossRefGoogle Scholar
  27. Fager, E. W., Marine sediment: effects of a tube-building polychaete, Science, 143, 356–359, 1964.CrossRefGoogle Scholar
  28. Farrow, G. E., Back-reef and lagoonal environments of Aldabra Atoll distinguished by their crustacean burrows, in Regional Variation in Indian Ocean Coral Reefs, edited by D. R. Stoddart and C. M. Yonge, pp. 455-500, Symp. Zool. Soc. London, 1971.Google Scholar
  29. Frankenberg, D., and K. L. Smith, Jr., Coprophagy in marine animals, Limnol. Oceanogr., 12, 443–450, 1967.CrossRefGoogle Scholar
  30. Frey, R. W., and J. D. Howard, Georgia Coast Region, Sapelo Island, U. S. A.: Sedimentology and Biology. VI. Radiographic study of sedimentary structures made by beach and offshore animals in aquaria, Senckenberg. marit. 4, 169–182, 1972.Google Scholar
  31. Galeine, C., and C. Houlbert, Les recifes d’Hermelles et l’assechement de la baie du Mont-Saint Michael. Bull Soc. geol. et min. de Bretagne, 2, 319–324, 1922.Google Scholar
  32. Gordon, D., The effects of the deposit-feeding polychaete Pectinaria gouldii on the intertidal sediments of Barnstable Harbor, Limnol. Ocean., 11, 327–332, 1966.CrossRefGoogle Scholar
  33. Griggs, G. B., A. G. Carey, and L. D. Kuln, Deep-sea sedimentation and sediment-fauna interaction in Cascadia Channel and Cascadia Abyssal Plain, Deep-Sea Res., 16, 157–170, 1969.Google Scholar
  34. Haven, D. S., and R. Morales-Alamo, Aspects of biodeposition by oysters and other invertebrate filter feeders, Limnol. Ocean., 11, 487–498, 1966.CrossRefGoogle Scholar
  35. Heezen, B. C., and C. D. Hollister, The Face of the Deep, Oxford Univ. Press, N. Y., 1971.Google Scholar
  36. Hersey, J. B. (ed.), Deep-sea photography, Johns Hopkins Press, Baltimore, 1968.Google Scholar
  37. Hertweck, G., Georgia Coastal Region, Sapelo Island, U. S. A.: Sedimentology and Biology. V. Distribution and environmental significance of lebensspuren and in situ skeletal remains, Senckenberg. marit., 4, 125–167, 1972.Google Scholar
  38. Hessler, R. R., J. D. Isaacs, and E. L. Mills, Giant amphipod from the abyssal Pacific Ocean, Science, 175, 636–637, 1972.CrossRefGoogle Scholar
  39. Hessler, R. R., and H. L. Sanders, Faunal diversity in the deep sea, Deep-Sea Res., 14, 65–78, 1967.Google Scholar
  40. Hobson, L. A., and D. W. Menzel, The distribution and chemical composition of organic particulate matter in the sea and sediments off the east coast of South America, Limnol. Ocean., 14, 159–163, 1969.CrossRefGoogle Scholar
  41. Jannasch, H. W., and C. O. Wirsen, Deep-sea microorganisms: in situ response to nutrient enrichment, Science, 180, 641–643, 1973.CrossRefGoogle Scholar
  42. Johannes, R. E., and M. Satomi, Composition and nutritive value of fecal pellets of a marine crustacean, Limnol. Ocean., 11, 191–197, 1966.CrossRefGoogle Scholar
  43. Keller, G. H., D. L. Lambert, G. T. Rowe, and N. Staresinic, Bottom currents in the Hudson Canyon, Science, 180, 181–183, 1973.CrossRefGoogle Scholar
  44. Kennedy, W. J., Burrows and surface traces from the lower chalk of southern England, Bull. Brit. Mus. Nat. Hist. (Geol.), 15, 127–167, 1967.Google Scholar
  45. Kuenen, H., Some arched and spiral structures in sediments, Geol. en Mignbouw 40 Jaargang, 71-74, 1961.Google Scholar
  46. MacGinitie, G. E., The natural history of Callianassa californiensis Dana, Am. Midl. Nat., 15, 166–177, 1934.CrossRefGoogle Scholar
  47. MacGinitie, H., and G. E. MacGinitie, Natural History of Marine Animals, McGraw Hill Book Co., N. Y., 1949.Google Scholar
  48. MacNae, W., A general account of the fauna and flora of mangrove swamps and forests in the Indo West Pacific region, Adv. Mar. Biol., 6, 73–270, 1968.CrossRefGoogle Scholar
  49. Menzel, D. W., Particulate organic carbon in the deep sea, Deep-Sea Res., 14, 229–238, 1967.Google Scholar
  50. Menzies, R. J., R. Y. George, and G. T. Rowe, Abyssal Environment and Ecology of the World Oceans, John Wiley and Sons, N. Y., 1973.Google Scholar
  51. Moore, H. B., Faecal pellets in relation to marine deposits, in Rec. Mar. Sediments, pp. 516-524, 1939.Google Scholar
  52. Myers, A. C., Some palaeoichnological observations on the tube of Diopatra cuprea (Bosc); Polychaeta, Onuphidea, in Trace Fossils, edited by T. P. Crimes and J. C. Harper, pp. 331-334, Geol. J., 4, 1970.Google Scholar
  53. Nadson, M. G., Les algues perforantes de la Mer Noire, Acad. Sci. Compté Rendus, 184, 896–989, 1927a.Google Scholar
  54. Nadson, M. G., Les algues perforantes, leur distribution et leur role dans la nature, Acad. Sci. Compté Rendus, 184, 1015–1017, 1927b.Google Scholar
  55. Neff, J. M., Minerai regeneration by serpulid polychaete worms, Biol. Bull., 136, 76–90, 1969.CrossRefGoogle Scholar
  56. Pearse, A. S., The habits of fiddler-crabs, Phillipine J. Sci., 7, 113–134, 1912.Google Scholar
  57. Perkins, R. D., and S. D. Halsey, Geologic significance of microboring fungi and algae in Carolina shelf sediments, J. Sediment. Petrol., 41, 843–853, 1971.Google Scholar
  58. Pfitzenmeyer, H. T., and K. G. Drobeck, Some factors influencing reburrowing activity of softshell clam, Mya arenaria, Chesapeake Sci., 8, 193–199, 1967.CrossRefGoogle Scholar
  59. Phillips, P. J., Observations on the biology of mudshrimps of the genus Callianassa (Anomura: Thalassinidea) in Mississippi Sound, Gulf Res. Repts., 3, 165–196, 1971.Google Scholar
  60. Reineck, H. E., Uber eingeregelte und verschachtelte Rohren des goldkocher-Wurmes (Pectinaria koreni), Natur, u. Volk, 90, 334–337, 1960.Google Scholar
  61. Rhoads, D. C., The influence of deposit-feeding benthos on water turbidity and nutrient recycling, Am. J. Sci., 273, 1–22, 1973.CrossRefGoogle Scholar
  62. Rice, A. L., and C. J. Chapman, Observations on the burrows and burrowing behavior of two mud-dwelling decapod crustaceans, Nephrops norvegicus and Goneplax rhomboides, Mar. Biol., 10, 330–342, 1971.CrossRefGoogle Scholar
  63. Richter, R., Ein devonischer Pfeifen quartzit, Senckenbergiana, 2, 215–235, 1920.Google Scholar
  64. Richter, R., Scolithus, Sabellarifex and Geflechtquarzite, Senckenbergiana, 3, 49–52, 1921.Google Scholar
  65. Richter, R., Sand korallen — Riffe inder Nordsee, Natur und Museum 57. Bericht der Senckenberg. Gesellschaft, Frankfurt a. M., 2, 49–62, 1927.Google Scholar
  66. Rittenberg, S. C., K. O. Emery, and W. L. Orr, Regeneration of nutrients in sediments of marine basins, Deep-Sea Res., 3, 214–228, 1955.Google Scholar
  67. Ropes, T., and A. Merrill, The burrowing activities of the surf clam, clam, Underwater Naturalist, 3, 11–17, 1966.Google Scholar
  68. Rowe, G. T., Benthic biomass and surface productivity, in Fertility of the Sea, 2, edited by J. Costlow, pp. 441-454, 1971a.Google Scholar
  69. Rowe, G. T., Observations on bottom currents and epibenthic populations, Deep-Sea Res., 18, 569–581, 1971b.Google Scholar
  70. Rowe, G. T., The exploration of submarine canyons and their benthic faunal assemblages, Proc. Roy. Soc. Edinburgh, 73, 159–169, 1972.CrossRefGoogle Scholar
  71. Rowe, G. T., and R. J. Menzies, Zonation of large benthic invertebrates in the deep sea off the Carolinas, Deep-Sea Res., 16, 531–537, 1969.Google Scholar
  72. Rowe, G. T., G. Keller, H. Edgerton, N. Staresinic, and J. MacIlvaine, Time-lapse photograph of the biological reworking of sediments in Hudson Submarine Canyon, J. Sediment. Petrol., in press.Google Scholar
  73. Rowe, G. T., P. T. Polloni, and S. Homer, Benthic biomass and abundance estimates from the northwestern Atlantic Ocean and the northern Gulf of Mexico, Deep-Sea Res., in press.Google Scholar
  74. Sameoto, D., Comparative ecology, life histories, and behavior of inter-tidal sand burrowing amphipods at Cape Cod, J. Fish. Res. Bd. Canada, 26, 361–388, 1969.CrossRefGoogle Scholar
  75. Sanders, H. L., Benthic marine diversity and the stability-time hypothesis, in Brookhaven Symp. Biol. (22), pp. 71–81, 1968.Google Scholar
  76. Sanders, H. L., R. R. Hessler, and G. R. Hampson, An introduction to the study of deep-sea benthic faunal assemblages along the Gay Head-Bermuda transect, Deep-Sea Res., 12, 845–867, 1965.Google Scholar
  77. Schafer, W., Aktuo-Palaontologie Nach Studien in der Nordsee, Waldemar Kramer, Frankfurt, 1962.Google Scholar
  78. Seilacher, A., Studien zur palichnologie. I. Uber die methoden der palichnologie, Nues Jahrbuch der Geol. Paläontol., 96, 421–451, 1953.Google Scholar
  79. Shinn, E. A., Burrowing in recent lime sediments of Florida and the Bahamas, J. Paleontol., 42, 879–894, 1968.Google Scholar
  80. Smith, K. L., Jr., and J. M. Teal, Deep-sea benthic community respiration: an in situ study at 1850 m, Science, 179, 282–283, 1973.CrossRefGoogle Scholar
  81. Sokolova, M. N., Relationships between feeding groups of bathypelagic macrobenthos and the composition of bottom sediments, Oceanology, 8, 141–151, 1968.Google Scholar
  82. Stanley, D. T., Fish-produced markings on the Atlantic outer continental margin off North-Central United States, J. Sediment. Petrol., 41, 159–170, 1971a.Google Scholar
  83. Stanley, D. T., Bioturbation and sediment failure in some submarine canyons, Vie et Milieu. Suppl., 22, 541–555, 1971b.Google Scholar
  84. Stevens, B. A., Callianassidae from the West Coast of North America Publ. Puget Sound Mar. Biol. Sta., 315-369, 1928.Google Scholar
  85. Swinchatt, J. P., Algal boring: a possible depth indicator in carbonate rock and sediments, Bull. Geol. Soc. Am., 80, 1391–1396, 1969.CrossRefGoogle Scholar
  86. Teal, J. M., Respiration of crabs in Georgia salt marshes and its relation to their ecology, Physiol. Zool., 32, 1–14, 1959.Google Scholar
  87. Trask, P. D., Organic content of recent marine sediments, in Rec. Mar. Sediments, edited by P. O. Trask, pp. 428-433, Am. Assoc. Petrol. Geologists, Tulsa, Oklahoma, 1939.Google Scholar
  88. Trueman, E. R., The mechanism of burrowing in the polychaete Arenicola marina (L), Biol. Bull., 131, 369–377, 1966.CrossRefGoogle Scholar
  89. Trueman, E. R., The dynamics of burrowing in Ensis (bivalvia), Proc. Roy. Soc. Ser. B. Biol. Sci., 166, 459–476, 1967.CrossRefGoogle Scholar
  90. Trueman, E. R., The burrowing activities of bivalves, Symp. Zool. Soc. London, No. 22, 167–186, 1968a.Google Scholar
  91. Trueman, E. R., A comparative account of the burrowing process of species of Mactra and other bivalves, Proc. Malacol. Soc. London, 38, 139–151, 1968b.Google Scholar
  92. Trueman, E. R., The burrowing process of Dentalium (Staphopod), J. Zool., 154, 19–27, 1968c.CrossRefGoogle Scholar
  93. Turner, R., Wood boring bivalves, opportunistic species in the deep sea, Science, 180, 1377–1379, 1973.CrossRefGoogle Scholar
  94. Verrill, A. E., Results of recent dredging expeditions on the coast of New England, Am. J. Sci. & Arts, 5, 1–14, 1973.Google Scholar
  95. Verwey, J., Einiges aus der Biologie von Talitrus saltator (Mont.) Congres Internati. Xe Zool., Budapest, pt. 2, 1156-1162, 1929.Google Scholar
  96. Warme, J. E., T. B. Scanland, and N. F. Marshall, Submarine canyon erosion: contribution of marine rock burrowers, Science, 173, 1127–1129, 1973.CrossRefGoogle Scholar
  97. Weimer, R. J., and J. H. Hoyt, Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments, J. Paleont., 38, 761–767, 1964.Google Scholar
  98. Wells, G. P., Mechanisms of movement in worms, Proc. Challanger Soc, 4, 36–50, 1969.Google Scholar
  99. Young, D. K., Effects of infauna on the sediment and seston of a subtidal environment, Vie et Milieu, 22, 511–512, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Gilbert T. Rowe
    • 1
  1. 1.Woods Hole Oceanographic InstitutionUSA

Personalised recommendations