In Situ Measurement of Sediment Acoustic Properties During Coring

  • Aubrey L. Anderson
  • Loyd D. Hampton
Part of the Marine Science book series (MR, volume 2)


The acoustical properties of liquid-saturated and gas-bearing sediments are discussed and related to other sediment properties. A system is described which has been developed for attachment to sediment corers in order to obtain an in situ sound-speed profile during a coring operation. The system uses two electroacoustic transducers mounted in the cutting head of the corer and associated electronic circuitry to measure the travel time of an acoustic pulse traversing the diameter of the sediment core. Results of laboratory and field tests are presented. There is an ongoing study of the feasibility of expanding the sound speed measurement system capabilities to include a measure of sediment acoustic attenuation and internal volume scattering. Each of these measured acoustical parameters is useful for sediment description and gas assessment.


Sound Speed Black Shale Acoustic Property SITU Measurement Saturated Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akal, T., The relationship between the physical properties of underwater sediments that affect bottom reflection, Mar. Geol., 13, 251–266, 1972.CrossRefGoogle Scholar
  2. Anderson, A. L., T. G. Muir, Jr., R. S. Adair, and W. H. Tolbert, A geoacoustic survey of the Brazos River, part I: environmental studies, Defense Research Laboratory Acoustical Rept. No. 294, DRL-A-294, Applied Research Laboratories, Univ. of Texas, Austin, 1968.Google Scholar
  3. Anderson, A. L., R. J. Harwood, and R. T. Lovelace, Investigation of gas in bottom sediments, Applied Research Laboratories Tech. Rept. No. 70-28, ARL-TR-70-28, Univ. of Texas, Austin, 1971.Google Scholar
  4. Bennett, L. C., Jr., In situ measurements of acoustic absorption in unconsolidated sediments (abstract), Trans. Am. Geophys. Union, 48, 144, 1967.Google Scholar
  5. Bennin, R. S., and C. S. Clay, Development of an in situ sediment velocimeter, Tech. Rept. No. 131, Hudson Laboratories, Columbia Univ., N. Y., 1967.Google Scholar
  6. Bobber, R. J., Acoustic characteristics of a Florida lake bottom, J. Acoust. Soc. Am., 31, 250–251, 1959.CrossRefGoogle Scholar
  7. Brandt, H., Factors affecting compressional wave velocity in unconsolidated marine sand sediments, J. Acoust. Soc. Am., 32, 171–179, 1960.CrossRefGoogle Scholar
  8. Brutsaert, W., and J. N. Luthin, The velocity of sound in soils near the surface as a function of the moisture content, J. Geophys. Res., 69, 643–652, 1964.CrossRefGoogle Scholar
  9. Cloud, P. E., Gas as a sedimentary and diagenetic agent, Am. J. Sci., 258-A, 34–35, 1960.Google Scholar
  10. Faas, R. W., Analysis of the relationship between acoustic reflectivity and sediment porosity, Geophysics., 34, 546–553, 1969.CrossRefGoogle Scholar
  11. Grubnik, N. A., Investigation of the acoustic properties of underwater soil at high acoustic frequencies, Sov. Phys. Acoust., 6, 447–454, 1961.Google Scholar
  12. Hamilton, E. L., Sediment sound velocity measured in situ from bathyscaph Trieste, J. Geophys. Res., 68, 5991–5994, 1963.Google Scholar
  13. Hamilton, E. L., Reflection coefficients and bottom losses at normal incidence computed from Pacific sediment properties, Geophysics, 35, 995–1004, 1970a.CrossRefGoogle Scholar
  14. Hamilton, E. L., Sound velocity and related properties of marine sediments, North Pacific, J. Geophys. Res., 75, 4423–4446, 1970b.CrossRefGoogle Scholar
  15. Hamilton, E. L., Prediction of in situ acoustic and elastic properties of marine sediments, Geophysics, 36, 266–284, 1971.CrossRefGoogle Scholar
  16. Hampton, L. D., Acoustic properties of sediments, J. Acoust. Soc. Amer., 42, 882–890, 1967.CrossRefGoogle Scholar
  17. Hochstein, M. P., Seismic measurements in Suva Harbour (Fiji), New Zealand, J. Geol. Geophys., 13, 269–281, 1970.CrossRefGoogle Scholar
  18. Jones, J. L., C. B. Leslie, and L. E. Barton, Acoustic characteristics of a lake bottom, J. Acoust. Soc. Am., 30, 142–145, 1958.CrossRefGoogle Scholar
  19. Jones, J. L., C. B. Leslie, and L. E. Barton, Acoustic characteristics of underwater bottoms, J. Acoust. Soc. Am., 36, 154–157, 1964.CrossRefGoogle Scholar
  20. Leslie, C. B., Normal incidence measurement of acoustic bottom constants, U. S. Naval Ordnance Laboratory Rept. No. 6832, 1960.Google Scholar
  21. Levin, F. K., The seismic properties of Lake Maracaibo, Geophysics, 27, 35–47, 1962.CrossRefGoogle Scholar
  22. Lewis, L. F., Speed of sound in unconsolidated sediments of Boston Harbor, Mass., Masters thesis, Mass. Inst. Technol., Cambridge, 1966.Google Scholar
  23. Lewis, L. F., V. A. Nacci, and J. J. Gallagher, In situ marine sediment probe and coring assembly, U. S. Naval Underwater Sound Laboratory Rept. No. 1094, 1970.Google Scholar
  24. Maxson, J. H., Gas pits in nonmarine sediments, J. Sediment Petrol., 10, 142–145, 1940.Google Scholar
  25. McCann, C., and D. M. McCann, The attenuation of compressional waves in marine sediments, Geophysics, 34, 882–892, 1969.CrossRefGoogle Scholar
  26. McLeroy, E. G., and A. DeLeach, Sound speed and attenuation, from 15 to 1500 kHz, measured in natural sea-floor sediments, J. Acoust. Soc. Am., 44, 1148–1150, 1968.CrossRefGoogle Scholar
  27. Monroe, J. N., Slumping structures caused by organically derived gases in sediments, Science, 164, 1394–1395, 1969.CrossRefGoogle Scholar
  28. Muir, T. G., Experimental capabilities of the ARL sediment tank facility in the study of buried object detection, Applied Research Laboratories Tech. Memo. No. 72-32, ARL-TM-72-32, Univ. of Texas, Austin, 1972.Google Scholar
  29. Nyborg, W. L., I. Rudnick, and H. K. Schilling, Experiments on acoustic absorption in sand and soil, J. Acoust. Soc. Am., 22, 422–425, 1950.CrossRefGoogle Scholar
  30. Ruff, G. A., Acoustic characteristics of Black Moshannon Lake bottom, J. Acoust. Soc. Am., 42, 524–525, 1967.CrossRefGoogle Scholar
  31. Schubel, J. R., Gas bubbles and the acoustically impenetrable, or turbid, character of some estuarine sediments, Proc. Conf. Natural Gases in Mar. Sediments, Lake Arrowhead, Calif., (in press).Google Scholar
  32. Shumway, G., Sound speed and absorption studies of marine sediments by a resonance method, Part I, Geophysics, 25, 451–467, 1960.CrossRefGoogle Scholar
  33. Stoll, R. D., J. Ewing, and G. M. Bryan, Anomalous wave velocities in sediments containing gas hydrates, J. Geophys. Res., 76, 2090–2094, 1971.CrossRefGoogle Scholar
  34. Ulonska, A., Versuche zer Messung der Schallgeschwindig keit und Schalldampfung im Sediment in situ, Deutsche Hydrographische Zeitschrift, 21(2), 49–58, 1968.CrossRefGoogle Scholar
  35. Urick, R. J., The absorption of sound in suspensions of irregular particles, J. Acoust. Soc. Am., 20, 283–289, 1948.CrossRefGoogle Scholar
  36. Wood, A. B., and D. E. Weston, The propagation of sound in mud, Acustica, 14, 156–162, 1964.Google Scholar
  37. Zangerl, R., and E. Richardson, The paleoecological history of two Pennsylvanian black shales, Fieldiana: Geol. Mem., 4, Field Museum of Natural History, Chicago, 1963.Google Scholar
  38. Zangerl, R., B. G. Woodland, E. G. Richardson, and D. L. Zachry, Early diagenetic phenomena in the Fayetteville black shale (Mississippian) of Arkansas, Sediment. Geol., 3, 87–119, 1969.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Aubrey L. Anderson
    • 1
  • Loyd D. Hampton
    • 1
  1. 1.The University of Texas at AustinUSA

Personalised recommendations