Skip to main content

Deep-Sea Foundation and Anchor Engineering

  • Chapter
Deep-Sea Sediments

Part of the book series: Marine Science ((MR,volume 2))

Abstract

Some aspects of deep-sea foundation and anchor engineering state-of-the-art are presented and discussed. Special emphasis is given to those areas where need exists for research and development. Techniques for predicting bearing capacity are discussed, and their shortcomings outlined. Techniques for estimating the short-term holding capacity of propellant-embedded anchors are discussed, and required information on long-term holding capacity and response to cyclic loading is described. The approaches used to minimize the detrimental effects of scour are reviewed and criticized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. I., and D. C. Hayes, The uplift capacity of shallow foundations, Ontario Hydro Res. Quart., 19 (1), 1967.

    Google Scholar 

  • Adams, J. I., and T. W. Klym, A study of anchorages for transmission tower foundations, Canadian Geotech. J., 9(1), 89–104, 1972.

    Article  Google Scholar 

  • Barnes, B. B., R. F. Corwin, J. H. Beyer, Jr., and T. G. Hildenbrand, Geologic prediction: developing tools and techniques for the geophysical identification and classification of sea-floor sediments, National Oceanic and Atmospheric Administration Tech. Rept. ERL 224-MMTC 2, 1971.

    Google Scholar 

  • Bowin, C. O., R. L. Chase, and J. B. Hersey, Geological applications of sea-floor photography, in Deep-Sea Photography, edited by J. B. Hersey, pp. 117–140, John Hopkins Press, Baltimore, 1967.

    Google Scholar 

  • Brundage, W. L., C. L. Buchanan, and R. B. Patterson, Search and serendipity, in Deep-Sea Photography, edited by J. B. Hersey, p. 81, John Hopkins Press, Baltimore, 1967.

    Google Scholar 

  • Demars, K. R., and R. J. Taylor, Naval sea-floor soil sampling and in-place test equipment: a performance evaluation, U. S. Naval Civil Engineering Laboratory Tech. Rept. R-730, 1971.

    Google Scholar 

  • Einstein, H. A., and R. L. Wiegel, A literature review on erosion and deposition of sediment near structures in the ocean, U. S. Naval Civil Engineering Laboratory Contract Rept. CR 70.008, 1970.

    Google Scholar 

  • Harr, M. E., Foundations of Theoretical Soil Mechanics, McGraw-Hill, N. Y., 1966.

    Google Scholar 

  • Hawkins, L. K., Visual observations of manganese deposits on the Blake Plateau, J. Geophys. Res., 74(28), 7009–7017, 1969.

    Article  Google Scholar 

  • Herrmann, H. G., K. Rocker, Jr., and P. H. Babineau, LOBSTER and FMS: devices for monitoring long-term sea-floor foundation behavior, U. S. Naval Civil Engineering Laboratory Tech. Rept. R-775, 27-28, 1972.

    Google Scholar 

  • Hirst, T. J., A. F. Richards, and A. L. Inderbitzen, A static cone penetrometer for ocean sediments, in Symp. Underwater Soil Sampling, Testing, and Construction Control, Am. Soc. Test. Mat. Spec. Tech. Publ. 501, pp. 69-80, Phila., 1972.

    Google Scholar 

  • Hjulstrom, F., Transportation of detritus by moving water, in Rec. Mar. Sediments, edited by P. D. Trask, p. 10, Am. Assoc. of Petrol. Geol., Tulsa, Okla., 1939.

    Google Scholar 

  • Hough, B. K., Basic Soils Engineering, 2nd edition, Ronald Press, N. Y., 1969.

    Google Scholar 

  • Kalajian, E. H., The vertical holding capacity of marine anchors in sand subjected to static and cyclic loading, Ph.D. thesis, Univ. of Mass., 1971.

    Google Scholar 

  • Keller, G. H., Investigation of the application of standard soil mechanics techniques and principles to bay sediments, U. S. Naval Oceanographic Office Informal Manuscript Rept. No. 0-6-64, 1964.

    Google Scholar 

  • Ko, Hon-Yim, and L. W. Davidson, Bearing capacity of footings in plane strain, J. Soil Mech. Fdns. Div., ASCE, 99 (SM1), 1973.

    Google Scholar 

  • Kretschmer, T. R., and H. J. Lee, Plate-bearing tests on sea-floor sediments, U. S. Naval Civil Engineering Laboratory Tech. Rept. R-694, 1970.

    Google Scholar 

  • Kuenen, P. H., Marine Geology, John Wiley and Sons, N. Y., p. 260, 1950.

    Google Scholar 

  • Lee, H. J., The Role of laboratory testing in the determination of deep-sea sediment engineering properties, (this volume), 1974.

    Google Scholar 

  • Meigh, A. C., and I. K. Nixon, Comparison on in situ tests for granular soils, Proc. Fifth Intern. Conf. on Soil Mech. and Fdn. Eng., I, 499–507, 1961.

    Google Scholar 

  • Meyerhof, G. G., The bearing capacity of foundations under eccentric and inclined loads, Proc. Third Intern. Conf. on Soil Mech. and Fdn. Eng., I, 440–445, 1953.

    Google Scholar 

  • Meyerhof, G. G., Penetration tests and bearing capacity of cohesionless soils, J. Soil Mech. Fdns. Div., ASCE, 82(SM1), p. 19, 1956.

    Google Scholar 

  • Meyerhof, G. G., and J. I. Adams, The ultimate uplift capacity of foundations, Canadian Geotech. J., 5(14), 225–244, 1968.

    Article  Google Scholar 

  • Muraoka, J. S., Animal undermining of naval sea-floor installations, U. S. Naval Civil Engineering Laboratory Tech. Note N-1124, 1970.

    Google Scholar 

  • Navfac DM-7, Design Manual: Soil Mechanics, Foundations and Earth Structures, Naval Facilities Engineering Command, Washington, D. C., 1971.

    Google Scholar 

  • Nimomiya, K., K. Tagaya, and Y. Murase, A study on suction breaker and scouring of a submersible offshore structure, 3rd Ann. Offshore Tech. Conf. Preprints, 1971.

    Google Scholar 

  • Peck, R. B., W. E. Hanson, and T. H. Thornburn, Foundation Engineering, 219–228, John Wiley and Sons, N. Y., 1953.

    Google Scholar 

  • Posey, C. J., Protection against underscour, 2nd Ann. Offshore Tech. Conf. Preprints, 2, 747–750, 1970.

    Google Scholar 

  • Raecke, D. A., and J. H. Migliore, Sea-floor pile foundations: state-of-the-art, and deep-ocean emplacement concepts, U. S. Naval Civil Engineering Laboratory Tech. Note N-1182, p. 10, 1971.

    Google Scholar 

  • Ralston, D. O., and J. B. Herbich, The effects of waves and currents on submerged pipelines (abstract No. 5), Texas A&M University Sea Grant Publ. 101, 1969.

    Google Scholar 

  • Reddy, S. A., and R. J. Srinivasan, Bearing capacity of footings on layered clays, J. Soil Mech. Fdns. Div., ASCE, 93(SM2), 83–99, 1967.

    Google Scholar 

  • Richards, A. F., V. J. McDonald, R. E. Olson, and G. H. Keller, In-place measurement of deep sea soil shear strength, in. Symp. Underwater Soil Sampling, Testing, and Construction Control, Am. Soc. Test. Mat. Spec. Tech. Publ. 501, pp. 55-68, Phila., 1972.

    Google Scholar 

  • Richards, A. F., and H. W. Parker, Surface coring for shear strength measurements, in Civil Eng. in the Oceans, pp. 445–489, ASCE, N. Y., 1968.

    Google Scholar 

  • Rosfelder, A. M., and N. F. Marshall, Obtaining large, undisturbed, and oriented samples in deep water, in Marine Geotechnique, edited by A. F. Richards, pp. 243–263, Univ. of Ill. Press, Urbana, 1967.

    Google Scholar 

  • Singh, A., and J. K. Mitchell, General stress-strain-time function for soils, J. Soil Mech. Fdns. Div., ASCE, 94(SM1), 231–253, 1968.

    Google Scholar 

  • Smith, D. T., Acoustic and electric techniques for sea-floor sediment identification, in. Proc. Intern. Symp. Eng. Properties of Sea-Floor Soils and their Geophys. Ident., pp. 235-267, Univ. of Washington, Seattle, 1971.

    Google Scholar 

  • Sowers, G. F., Shallow Foundations, Chapter 6 in Foundation Engineering, edited by G. A. Leonards, McGraw-Hill, N. Y., 1962.

    Google Scholar 

  • Taylor, R. J., and R. M. Beard, Propellant-actuated deep water anchor, 5th Ann. Offshore Tech. Conf. Preprints, I(OTC 1744), 199–208, 1973.

    Google Scholar 

  • Taylor, R. J., and H. J. Lee, Direct embedment anchor-holding capacity, U. S. Naval Civil Engineering Laboratory Tech. Note N-1245, 1972.

    Google Scholar 

  • Terzaghi, K., and R. B. Peck, Soil Mechanics in Engineering Practice, 2nd edition, John Wiley and Sons, N. Y., 1967.

    Google Scholar 

  • Thompson, L. J., Mechanics problems and material properties, (this volume), 1974.

    Google Scholar 

  • Trofimenkov, J. G., and L. G. Mariupolskii, Screw piles used for mast and tower foundations, Proc. Sixth Intern. Conf. on Soil Mech. and Fdn. Eng., 2, 328–332, 1965.

    Google Scholar 

  • Vesic, A. S., Breakout resistance of objects embedded in ocean bottom, U. S. Naval Civil Engineering Laboratory Contract Rept. CR 69.031, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Valent, P.J. (1974). Deep-Sea Foundation and Anchor Engineering. In: Inderbitzen, A.L. (eds) Deep-Sea Sediments. Marine Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2754-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2754-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2756-1

  • Online ISBN: 978-1-4684-2754-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics