Advertisement

Smooth Muscle pp 201-230 | Cite as

Recording of Intracellular Electrical Activity with Microelectrodes

  • H. Kuriyama
  • Y. Ito

Abstract

Six decades ago, Fuchs (1910) and Brücke (1910) independently recorded electrical current from the smooth muscles of uterus, ureter, and retractor penis (see review of Evans, 1926). Action potentials of smooth muscle were first recorded in vivo by Alvarez and Mahoney (1922), and were recorded in vitro, from stomach muscle, two years later (Richter, 1924). Preliminary analysis of the active membrane potential recorded from various smooth muscles, e.g., uterus, urinary bladder, nictitating membrane, and pilar muscles, was made by Rosenblueth (1950). He classified the action potential into an initial (or spike) and a delayed potential.

Keywords

Smooth Muscle Rest Membrane Potential Hypertonic Solution Glass Microelectrode Cable Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y. and Tomita, T. 1968. Cable properties of smooth muscle. J. Physiol., 196:87–100.PubMedGoogle Scholar
  2. Åberg, A. K. G. and Axelsson, J. 1965. Some mechanical aspects of an intestinal smooth muscle. Acta Physiol. Scand.,, 64: 15–27.PubMedCrossRefGoogle Scholar
  3. Adrian, R. H. 1956. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol., 133:631–658.PubMedGoogle Scholar
  4. Agin, D. P. 1969. Electrochemical properties of glass microelectrodes. In: Glass Microelectrodes, pp. 62–75. Ed. by Lavallee, M., Schanne, O. F., and Hebert, N. C. Wiley, New York.Google Scholar
  5. Agin, D. P. and Holtsman, D. 1966. Glass microelectrodes: origin and elimination of tip potentials. Nature., 211:1194–1195.PubMedCrossRefGoogle Scholar
  6. Alexander, J. T. and Nastuk, W. L. 1953. An instrument for the production of microelectrodes used in physiological studies. Rev. Sci. Instr., 24:528–531.CrossRefGoogle Scholar
  7. Alvarez, W. C. and Mahoney, L. J. 1922. Action currents in stomach and intestine. Am. J. Physiol., 58:476–493.Google Scholar
  8. Araki, T. and Otani, T. 1955. Response of single mononeurones to direct stimulation in toad’s spinal cord. J. Neurophysiol., 18: 472–485.PubMedGoogle Scholar
  9. Axelsson, J. 1970. Mechanical properties of smooth muscle, and the relationship between mechanical and electrical activity. In: Smooth Muscle, pp. 289–315. Ed. by Bülbring, E., Brading, A., Jones, A., and Tomita, T. Edward Arnold, London.Google Scholar
  10. Beck, C. S. and Osa, T. 1971. Membrane activity in guinea pig gastric sling muscle: a nerve-dependent phenomenon. Am. J. Physiol., 220(5).Google Scholar
  11. Beeler, G. W. Jr. and Reuter, H. 1970. Voltage clamp experiments on ventricular myocardial fibres. Physiol., 207:165–190.Google Scholar
  12. Bennett, M. R. 1967. The effect of intracellular current pulses in smooth muscle cells of the guinea pig vas deferens at rest and during transmission. J. Gen. Physiol., 50:2459–2475.PubMedCrossRefGoogle Scholar
  13. Bozler, E. 1948. Conduction, automaticity and tonus of visceral muscles. Experientia, 4: 213–218.CrossRefGoogle Scholar
  14. Brading, A. F. and Setekleiv, J. 1968. The effect of hypo- and hypertonic solutions on volume and ion distribution of smooth muscle of guinea-pig taenia coli. J. Physiol., 195: 107–118.PubMedGoogle Scholar
  15. Brading, A. F., Bülbring, E., and Tomita, T. 1969. The effect of temperature on the membrane conductance of the guinea-pig taenia coli. J. Physiol., 200:621–635.PubMedGoogle Scholar
  16. Brücke, E. Th. 1910. Beiträge zur Physiolosie der autonom innervierten Muskulatur. I. Die elektromo¬torische Wirkungen des Musculus retractor penis im Zustande tonischer Kontraktion. Arch. Ges. Physiol., 133:313–340.CrossRefGoogle Scholar
  17. Bülbring, E. 1964. Pharmacology of smooth muscle. In: Second Int. Pharmacological Meeting, Vol. 6. Pergamon Press, Oxford.Google Scholar
  18. Bülbring, E. and Hooton, I.N. 1954. Membrane potentials of smooth muscle fibres in the rabbit’s sphincter pupülae. J. Physiol., 125:292–301.PubMedGoogle Scholar
  19. Bülbring, E. and Kuriyama, H. 1963. The effect of adrenaline on the smooth muscle on guinea-pig taenia coli in relation to the degree of stretch. J. Physiol., 169:198–212.Google Scholar
  20. Bülbring, E., Brading, A., Jones, A., and Tomita, T. 1970. Smooth Muscle. Edward Arnold, London.Google Scholar
  21. Bures, J., Petran, M., and Zachar, J. 1967. Electrophysiological Methods in Biological Research. Academic Press, New York.Google Scholar
  22. Burnstock, G., Holman, M., and Prosser, C. L. 1963. Electrophysiology of smooth muscle. Physiol. Rev., 43:482–527.PubMedGoogle Scholar
  23. Caldwell, P. C. and Dowing, A. C. 1955. The preparation of capillary microelectrodes. J. Physiol, 128:31.Google Scholar
  24. Casteels, R. 1970. The relation between the membrane potential and the ion distribution in smooth muscle cells. In: Smooth Muscle. Ed. by Bülbring, E., Brading, A., Jones, A., and Tomita, T. Pergamon Press, Oxford.Google Scholar
  25. Code, C. F., Ed. 1968. Handbook of Physiology. Alimentary Canal. IV. Motility, pp. 1579–2343. American Physiological Society, Washington, D.C.Google Scholar
  26. Crain, S. M. 1956. Resting and action potentials of cultured chick embryo spinal ganglion cells. J. Comp. Neurol., 104:285–329.PubMedCrossRefGoogle Scholar
  27. Deck, K. A., Kern, R., and Trautwein, W. 1964. Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch., 280:50–62.CrossRefGoogle Scholar
  28. Eichna, L. W., Ed. 1962. Proceedings of a symposium on vascular smooth muscle. Physiol. Rev., 42(Suppl. 5).Google Scholar
  29. Evans, C. L. 1926. The physiology of plain muscle. Physiol. Rev., 6:358–398.Google Scholar
  30. Frank, K. and Becker, M. C. 1964. Microelectrodes for recording and stimulation. In: Physical Techniques in Biological Research, Vol. VA, Chapter 2. Ed. by W. L. Nastuk. Academic Press, New York.Google Scholar
  31. Frank, K. and Fuortes, M. G. F. 1955. Potentials recorded from the spinal cord with microelectrodes. J. Physiol., 130.625–654.PubMedGoogle Scholar
  32. Fuchs, R. F. 1910. Die elecktrischen Erscheinungen am glatten Muskel. Arch. Ges. Physiol., 136:65–100.CrossRefGoogle Scholar
  33. Geddes, L. A. 1972. Electrodes and the Measurement of Bioelectric Events. Wiley—Interscience, New York.Google Scholar
  34. Greven, K. 1954. Uber den Mechanismus der Regulierung der Kontraktionsstärke beim glatten Muskel durch tetanische und quantilative (räumliche) Summation. Z. Biol., 106:377–385.PubMedGoogle Scholar
  35. Hodgkin, A. L. and Rushton, W. A. H. 1946. The electrical constants of a crustacean nerve fibre. Proc. R. Soc. B, 133:444–479.CrossRefGoogle Scholar
  36. Holman, M. E. 1958. Membrane potentials recorded with high-resistance microelectrodes: and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the gunea pig. J. Physiol., 141:464–488.PubMedGoogle Scholar
  37. Holman, M. E. 1968. An introduction to the electrophysiology of smooth muscle. In: Handbook of Physiology. Alimentary Canal. IV, pp. 1165–1708. Ed. by Code, C. F. American Physiological Society, Washington, D.C.Google Scholar
  38. Hoshi, T. 1957. New simple method for direct filling the microelectrode with electrolyte solution (in Japanese). Med. Sci., 8:175–176.Google Scholar
  39. Hutter, O. F., and Warner, A. E. 1967. The pH sensitivity of the chloride conductance of frog skeletal muscle. J. Physiol, 189:403–425.PubMedGoogle Scholar
  40. Ito, Y. and Kuriyama, H. 1971. Nervous control of the motility of the alimentary canal of the silver carp. J.Exp.Biol., 55:469–481.PubMedGoogle Scholar
  41. Johansson, B. and Jonsson, O. 1968. Cell volume as a factor influencing electrical and mechanical activity of vascular smooth muscle. Acta Physiol. Scand.,, 72:456–468.PubMedCrossRefGoogle Scholar
  42. Kao, C. Y. 1954. A method of making prefilled microelectrodes. Science, 119:846–847.PubMedCrossRefGoogle Scholar
  43. Kennard, D. W. 1958. Glass microcapillary electrodes used for measuring potential in living tissues. In: Electronic Apparatus for Biological Research. Ed. by Danaldson, P. E. K. Academic Press, New York.Google Scholar
  44. Kobayashi, M. 1971. Relationship between membrane potential and spike configuration recorded by sucrose gap method in the ureter smooth muscle. Comp. Biochem. Physiol. A, 38: 301–308.PubMedCrossRefGoogle Scholar
  45. Kurella, G. A. 1958. Method of investigation of rest potential dynamics on separate muscle fibers. Biophysics, 3: 614–619.Google Scholar
  46. Kuriyama, H. 1970. Effects of ions and drugs on the electrical activity of smooth muscle. In: Smooth Muscle, pp. 366–395. Ed. by Bülbring, E., Brading, A., Jones, A., and Tomita, T. Edward Arnold, London.Google Scholar
  47. Kuriyama, H. and Tomita, T. 1965. The responses of single smooth muscle cells of guinea-pig taenia coli to intracellularly applied currents, and their effects on the spontaneous electrical activity. J. Physiol., 178:270–289.PubMedGoogle Scholar
  48. Kuriyama, H., Osa, T., and Toida, N. 1967a. Electrophysiological study of the intestinal smooth muscle of the guinea-pig. J. Physiol., 191:239–255.PubMedGoogle Scholar
  49. Kuriyama, H., Osa, T., and Toida, N. 1967b. Nervous factors influencing the membrane activity of intestinal smooth muscle. J. Physiol., 191:257–270.PubMedGoogle Scholar
  50. Kuriyama, H., Ohshima, K., and Sakamoto, Y. 1971. The membrane properties of the smooth muscle of the guinea-pig portal vein in isotonic and hypertonic solutions. J. Physiol, 217:179–200.PubMedGoogle Scholar
  51. Lavallèe, M., Schanne, O. F., and Hebert, N. C. 1969. Glass Microelectrodes. Wiley, New York.Google Scholar
  52. Ling, G. N. and Gerard, R. W. 1949. The normal membrane potential of frog sartorius fibres. J. Cell Comp. Physiol., 34:383–396.CrossRefGoogle Scholar
  53. Lux, D. 1960. Microelectrodes of high stability, EEG Clin. Neurophysiol, 12:28–929.CrossRefGoogle Scholar
  54. Magaribuchi, T., Ito, Y., and Kuriyama, H. 1973. Effects of rapid cooling on the mechanical and electrical activities of the smooth muscles of the guinea-pig stomach and taenia coli. J. Gen. Physiol, 61:323–341.PubMedCrossRefGoogle Scholar
  55. Mashima, H. and Yoshida, T. 1965. Effect of length of the development of tension in guinea-pig’s taenia coli. Jap. J. Physiol., 15:463–477.CrossRefGoogle Scholar
  56. Mekata, F. 1971. Electrophysiological studies of the smooth muscle cell membrane of the rabbit common carotid artery. J. Gen. Physiol. 57:738–751.PubMedCrossRefGoogle Scholar
  57. Nagai, T. and Prosser, C. L. 1963a. Patterns of conduction in smooth muscle. Am. J. Physiol., 204:910–914.PubMedGoogle Scholar
  58. Nagai, T. and Prosser, C. L. 1963b. Electrical parameters of smooth muscle. Am. J. Physiol., 204:915–924.PubMedGoogle Scholar
  59. Nastuk, W. L. 1953. The electrical activity of the muscle cell membrane at the neuromuscular junction. J. Cell. Comp. Physiol, 42:249–212.CrossRefGoogle Scholar
  60. Nastuk, W. L. 1964. Physical Techniques in Biological Research, Vol. 5. Electrophysiological Methods, Part A. Academic Press, New York, London.Google Scholar
  61. Nastuk, W. L. and Hodgkin, A. L. 1950. The electrical activity of single muscle fibers. J. Cell Comp. Physiol, 35:39–74.CrossRefGoogle Scholar
  62. Noble, D. 1966. Applications of Hodgkin-Huxley equations to excitable tissues. Physiol Rev., 46:1–50.PubMedGoogle Scholar
  63. Osa, T. and Kuriyama, H. 1971. The membrane properties and decremental conduction of excitation in the fundus of the guinea-pig stomach. Jap. J. Physiol, 20:626–639.CrossRefGoogle Scholar
  64. Prosser, C. L., Burnstock, G., and Kahn, J. 1960. Conduction in smooth muscle: Comparative structural properties. Am. J. Physiol, 199:545–552.PubMedGoogle Scholar
  65. Richter, C. P. 1924. Action currents from the stomach. Am. J. Physiol, 67:612–633.Google Scholar
  66. Rosenblueth, A. 1950. The Transmission of Nerve Impulses at Neuro-effector Junctions and Peripheral Synapses. Wiley, New York.Google Scholar
  67. Tanaka, I. and Sasaki, Y. 1966. On the electrotonic spread in cardiac muscle of the mouse. J. Gen. Physiol., 49:1089–1110.PubMedCrossRefGoogle Scholar
  68. Tasaki, I. and Hagiwara, S. 1957. Capactity of muscle fibre membrane. Am. J. Physiol., 188:422–429.Google Scholar
  69. Tasaki, I., Polley, E. J., and Orrego, F. 1954. Action potentials from individual elements in cat geniculate striate cortex. J. Neurophysiol, 17:454–474.PubMedGoogle Scholar
  70. Tomita, T. 1966. Membrane capacity and resistance in mammalian smooth muscle. J. Theor. Biol., 12:216–227.PubMedCrossRefGoogle Scholar
  71. Tomita, T. 1967a Current spread in the smooth muscle of the guinea-pig vas deferens. J. Physiol, 189: 163–176.PubMedGoogle Scholar
  72. Tomita, T. 1967b. Spike propagation in the smooth muscle of the guinea-pig taenia coli. J. Physiol, 191:517–527.PubMedGoogle Scholar
  73. Tomita, T. 1969. The longitudinal tissue impedance of the smooth muscle of guinea-pig taenia coli. J. Physiol, 201: 145–159.PubMedGoogle Scholar
  74. Tomita, T. 1970. Electrical properties of mammalian smooth muscle. In: Smooth Muscle, pp. 198–243. Ed. by Bülbring, E., Brading, A., Jones, A., and Tomita, T. Edward Arnold, London.Google Scholar
  75. Weidmann, S. 1968. Elektrische Konstanten des Myocards. Helv. Physiol Acta, 26: C.R. 363.Google Scholar
  76. Wienbeck, M., Golenhofen, K., and Lammel, E. 1972. The effects of CO2 and pH on the spontaneous activity of the taenia coli of guinea pig. Pflügers Arch. Physiol, 334:181–192.CrossRefGoogle Scholar
  77. Winsbury, G. J. 1956. Machine for the fast production of microelectrodes. Rev. Sci. Instr., 27:514–516.CrossRefGoogle Scholar
  78. Woodbury, J. W. and Brady, A.J. 1956. Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science, 123:100–101.PubMedCrossRefGoogle Scholar
  79. Woodbury, J. W. and Crill, W. E. 1961. On the problem of impulse conduction in the atrium. In: Nervous Inhibition. Ed. by Florey, E. Pergamon Press, Oxford.Google Scholar
  80. Woodbury, J. W. and Mclntyre, D. M. 1954. Electrical activity of single muscle cells of pregnant uteri studied with intracellular ultramicroelectrodes. Am. J. Physiol., 177:355–360.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • H. Kuriyama
    • 1
  • Y. Ito
    • 1
  1. 1.Department of Physiology Faculty of DentistryKyushu UniversityFukuokaJapan

Personalised recommendations