Smooth Muscle pp 647-661 | Cite as

Estimation of the State of Ions in Smooth Muscle

  • V. Palaty
  • S. M. Friedman


It would seem desirable to be able to describe the state of an ionic species in the smooth muscle under study as accurately as possible. However, a complete description of the state of an ion, for example, of Na+, would require that the instantaneous values of all the relevant microscopic parameters, such as the position, velocity, energy, and interaction with the neighboring atoms, be specified for every single Na+, ion present in the preparation. Apart from the obvious fact that determination of this kind is impossible, the resulting set of data would be so complex that it could hardly serve any practical purpose. In order to simplify the description, one could consider the possibility of dividing the preparation into homogeneous volume elements. These elements would have to be small enough to ensure their homogeneity and yet large enough so that the Na+, ions contained in every element could be treated as a statistical assembly. Under these conditions, it would be possible to characterize the state of the assembly of Na+, ions in each volume element by the mean values of the above microscopic parameters, usually in terms of the corresponding macroscopic quantities such as the concentration cNa+, the flux J Na +, and the chemical potential µNa + . Accurate though it might be to describe the state of the ion in the preparation by a set of values of local macroscopic quantities, such a description still would be too complex.


Smooth Muscle External Solution Frog Skeletal Muscle Cytoplasmic Matrix Taenia Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, W. McD. and Lee, C. O. 1971. Sodium and potassium activities in normal and “sodium-rich” frog skeletal muscle. Science, 171:413–414.PubMedCrossRefGoogle Scholar
  2. Ashley, C. C. and Ellory, J. C. 1972. The efflux of magnesium from single crustacean muscle fibres. J. Physiol, 226:653–674.PubMedGoogle Scholar
  3. Ashley, C. C. and Ridgway, E. B. 1968. Simultaneous recording of membrane potential, calcium transient and tension in single muscle cells. Nature, 219:1168–1169.PubMedCrossRefGoogle Scholar
  4. Baker, P. F. and Crawford, A. C. 1972. Mobility and transport of magnesium in squid giant axons. J. Physiol, 227:855–874.PubMedGoogle Scholar
  5. Bates, R. G. and Alfenaar, M. 1969. Activity standards for ion-selective electrodes. In: Ion-Selective Electrodes, pp. 191–214. Ed. by Durst, A. National Bureau of Standards Special Publication 314, Washington, D.C.Google Scholar
  6. Belton, P. S., Jackson, R. R., and Packer, K. J. 1972. Pulsed NMR studies of water in striated muscle. I. Transverse nuclear spin relaxation times and freezing effects. Biochim. Biophys. Acta, 286:16–25.PubMedCrossRefGoogle Scholar
  7. Berendsen, H. J. C. and Edzes, H. T. 1973. The observation and general interpretation of sodium magnetic resonance in biological material. Ann. N. Y. Acad. Sci., 204:459–485.PubMedCrossRefGoogle Scholar
  8. Brading, A. F. 1971. Analysis of the efflux of sodium, potassium and chloride ions from smooth muscle in normal and hypertonic solutions. J. Physiol., 214:393–416.PubMedGoogle Scholar
  9. Brading, A. F. 1973. Ion distribution and ion movements in smooth muscle.Phil. Trans. R. Soc. Lond. B, 265:35–46.CrossRefGoogle Scholar
  10. Brading, A. F. and Jones, A. W. 1969. Distribution and kinetics of CoEDTA in smooth muscle, and its use as an extracellular marker. J. Physiol., 200:387–401.PubMedGoogle Scholar
  11. Brinley, F. J. Jr. 1968. Sodium and potassium fluxes in isolated barnacle muscle fibers. J. Gen. Physiol., 51:445–477.PubMedCrossRefGoogle Scholar
  12. Buck, B. and Goodford, P. J. 1966. The distribution of ions in the smooth muscle of the guinea-pig taenia coli. J. Physiol, 183:551–569.PubMedGoogle Scholar
  13. Caillè, J. P. 1973. Evidence for K+ and Cl binding inside muscle from diffusion studies. Can. J. Physiol Pharmacol, 50:228–237.CrossRefGoogle Scholar
  14. Caillè, J. P. and Hinke, J. A. M. 1972. Evidence for Na sequestration in muscle from Na diffusion measurements. Can. J. Physiol Pharmacol, 50:228–237.PubMedCrossRefGoogle Scholar
  15. Caillè, J. P. and Hinke, J. A. M. 1974. The volume available to diffusion in the muscle fiber. Can. J. Physiol Pharmacol, 52:814–828.PubMedCrossRefGoogle Scholar
  16. Casteels, R. 1969. The relation between the membrane potential and the ion distribution in smooth muscle cells. In: Smooth Muscle, pp. 70–99. Ed. by Bülbring, E., Brading, A. F., Jones, A. W., and Tomita, T. Edward Arnold, London.Google Scholar
  17. Casteels, R. 1971. The distribution of chloride ions in the smooth muscle cells of the guinea-pig’s taenia coli. Physiol., 214:225–243.Google Scholar
  18. Casteels, R. and Kuriyama, H. 1966. Membrane potential and ion content in the smooth muscle cells of the guinea-pig’s taenia coli at different external potassium concentrations. J. Physiol, 184:120–130.PubMedGoogle Scholar
  19. Casteel, R., Raeymaekers, L., Goffin, J., and Wuytack, F. 1973. A study of factors affecting the cellular calcium content of smooth muscle cells.Arch. Int. Pharmacodyn., 201:191–192.Google Scholar
  20. Civan, M. M. and Shporer, M. 1972. 17O nuclear magnetic resonance spectrum of in frog striated muscle. Biophys. J.,12:404–413.PubMedCrossRefGoogle Scholar
  21. Cooke, R. and Wien, R. 1973. Nuclear magnetic resonance studies of intracellular water protons. Ann. N.Y.Acad. Sci, 204:197–209.PubMedCrossRefGoogle Scholar
  22. Cope, F. W. 1967. NMR evidence for complexing of Na+ in muscle, kidney and brain, and by actomyosin. J. Gen. Physiol., 50:1353–1375.PubMedCrossRefGoogle Scholar
  23. Czeisler, J. L. and Swift, T. J. 1973. A comparative study of sodium ion in muscle tissue and ion exchange resins through the application of nuclear magnetic resonance. Ann. N.Y. Acad. Sci., 204:261–273.PubMedCrossRefGoogle Scholar
  24. Czeisler, J. L., Fritz, O. G., Jr., and Swift, T. J. 1970. Direct evidence from nuclear magnetic resonance studies for bound sodium in frog skeletal muscle. Biophys. J., 10:260–268.PubMedCrossRefGoogle Scholar
  25. Daniel, E. E. and Robinson, K. 1960. The secretion of sodium and uptake of potassium by isolated uterine segments made sodium-rich. J. Physiol., 154: 421–444.PubMedGoogle Scholar
  26. Devine, C. E., Somlyo, A. V., and Somlyo, A. P. 1972. Sarcoplasmic reticulum and excitation-contraction coupling in mammaHan smooth muscles. J. Cell Biol, 52:690–718.PubMedCrossRefGoogle Scholar
  27. Dunstone, J. R. 1962. Ion-exchange reactions between acid mucopolysaccharides and various cations. Biochem. J., 85:336–351.PubMedGoogle Scholar
  28. Eisenman, G. 1962. Cation-selective glass electrodes and their mode of operation. Biophys. J., 2(Suppl. to No. 2): 259–323.PubMedCrossRefGoogle Scholar
  29. Elford, B. C. 1970. Diffusion and distribution of dimethylsulfoxide in the isolated guinea-pig taenia coli. J. Physiol, 209:187–208.PubMedGoogle Scholar
  30. England, P. J., Denton, R. M., and Randle, P. J. 1967. The influence of magnesium ions and other bivalent metal ions on the aconitase equilibrium and its bearing on the binding of magnesium ions by citrate in rat heart. Biochem. J., 105:32C-33C.PubMedGoogle Scholar
  31. Filo, R. S., Bohr, D. F., and Rüegg, J. C. 1965. Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science, 147:1581–1583.PubMedCrossRefGoogle Scholar
  32. Finch, E. D., Harmon, J. F., and Muller, B. H. 1971. Pulsed NMR measurements of the diffusion constant of water in muscle. Arch. Biochem. Biophys., 147:299–310.PubMedCrossRefGoogle Scholar
  33. Friedman, S. M. 1974. Lithium substitution and the distribution of sodium in the rat tail artery. Circulation Res., 34:168–175.PubMedCrossRefGoogle Scholar
  34. Garay, R. P. and Garrahan, P. J. 1973. The interaction of sodium and potassium with the sodium pump in red cells.J. Physiol, 231:297–325.PubMedGoogle Scholar
  35. Glasel, J. A. and Lee, K. H. 1974. On the interpretation of water nuclear magnetic resonance relaxation times in heterogeneous systems. J. Am. Chem. Soc., 96:970–978.CrossRefGoogle Scholar
  36. Goodford, P. J. 1964. Chloride content and 36Cl uptake in the smooth muscle of the guinea-pig taenia coli. J. Physiol, 170:227–237.PubMedGoogle Scholar
  37. Goodford, P. J. 1966. An interaction between potassium and sodium in the smooth muscle of the guinea- pig taenia coli. J. Physiol, 186:11–26.PubMedGoogle Scholar
  38. Goodford, P. J. 1967. The calcium content of the smooth muscle of the guinea-pig taenia coli. J. Physiol., 192:145–157.PubMedGoogle Scholar
  39. Goodford, P. J. 1970. Ionic interactions in smooth muscle. In: Smooth Muscle, pp. 100–121. Ed. by Bülbring, E., Brading, A. F., Jones, A. W., and Tomita, T. Edward Arnold, London.Google Scholar
  40. Gottlieb, M. H. 1971. On the rates of exchange between free and bound counterions in polyelectrolyte solutions. J. Phys. Chem., 57:1990–1993.CrossRefGoogle Scholar
  41. Haljamäe, H., Johansson, B., Jonsson, O., and Röckert, H. 1970. The distribution of sodium, potassium and chloride in the smooth muscle of the rat portal vein. Acta Physiol Scand., 78:255–268.PubMedCrossRefGoogle Scholar
  42. Headings, V. E., Rondell, P. A., and Bohr, D. F. 1960. Bound sodium in artery wall. Am. J. Physiol, 199:783–787.PubMedGoogle Scholar
  43. Hinke, J. A. M. 1959. Glass Microelectrodes for measuring extracellular activities of sodium and potassium. Nature, 184: 1257–1258.PubMedCrossRefGoogle Scholar
  44. Hinke, J. A. M. 1967. Cation selective microelectrodes for intracellular use. In: Glass Electrodes for Hydrogen and Other Cations, pp. 464–477. Ed. by Eisenman, G. Marcel Dekker, New York.Google Scholar
  45. Hinke, J. A. M. 1970. Solvent water for electrolytes in the muscle fiber of the giant barnacle. J. Gen. Physiol., 56:521–541.PubMedCrossRefGoogle Scholar
  46. Hinke, J. A. M. and Gayton, D. C. 1971. Transmembrane K+ and Cl activity gradients for the muscle fiber of the giant barnacle. Can. J. Physiol Pharmacol, 49:312–322.PubMedCrossRefGoogle Scholar
  47. Hinke, J. A. M., Caillé, J. P. and Gayton, D. C. 1973. Distribution and state of monovalent ions in skeletal muscle based on ion electrode, isotope, and diffusion analyses. Ann. N. Y. Acad. Sci., 204:274–296.PubMedCrossRefGoogle Scholar
  48. Hollander, W., Kramsch, D. M., Yagi, S., and Madoff, L M. 1966. Metabolic and hemodynamic factors in the increased salt and water content of hypertensive arteries. In: Arterial Hypertension, pp. 305–326. Ed. by Milliez, P. and Tcherdakoff, P. L’Expansion Scientifique Francaise, Paris.Google Scholar
  49. Hurwitz, L., Fitzpatrick, D. F., Debbas, G., and Landon, E. J. 1973. Localization of calcium pump activity in smooth muscle.Science, 179:384–386.PubMedCrossRefGoogle Scholar
  50. Jones, A. W. and Swain, M. L. 1972. Chemical and kinetic analyses of sodium distribution in canine lingual artery. Am. J. Physiol., 223:1110–l118.PubMedGoogle Scholar
  51. Kostyuk, P. G., Sorokina, Z. A., and Kholodova, Yu. D. 1969. Measurement of activity of hydrogen, potassium and sodium ions in striated muscle fibers and nerve cells. In: Glass Microelectrodes, pp. 322–348. Ed. by Lavallee, M., Schanne, O. F., and Hebert, N. C. Wiley, New York.Google Scholar
  52. Krasne, S. and Eisenman, G. 1973. The molecular basis of ion selectivity. In: Membranes: A Series of Advances, Vol. 2, pp. 277–328. Ed. by Eisenman, G. Marcel Dekker, New York.Google Scholar
  53. Kushmerick, M. J. and Podolsky, R. J. 1969. Ionic mobility in muscle cells. Science, 166:1297–1298.PubMedCrossRefGoogle Scholar
  54. Lev, A. A. 1964. Determination of activity and activity coefficients of potassium and sodium ions in frog muscle fibres. Nature, 201:1132–1134.PubMedCrossRefGoogle Scholar
  55. Lewis, M. S. and Saroff, H. A. 1957. The binding of ions to the muscle proteins. Measurements on the binding of K and Na ions to myosin A, myosin B and actin. J. Am. Chem. Soc., 79:2112–2117.CrossRefGoogle Scholar
  56. Ling, G. N. 1962. A Physical Theory of the Living State: The Association-Induction Hypothesis. Blaisdell, New York.Google Scholar
  57. Ling, G. N. and Ochsenfeld, M. M. 1973. Control of cooperative adsorption of solutes and water in living cells by hormones, drugs, and metabolic products. Ann. N. Y. Acad. Sci., 204:325–336.PubMedCrossRefGoogle Scholar
  58. Ling, G. N., Miller, C., and Ochsenfeld, M. M. 1973. The physical state of solutes and water in living cells according to the association-induction hypothesis. Ann. N. Y. Acad. Sci., 204:6–47.PubMedCrossRefGoogle Scholar
  59. McLaughlin, S. G. A. and Hinke, J. A. M. 1966. Sodium and water binding in single striated muscle fibers of the giant barnacle.Can. J. Physiol. Pharmacol., 44:837–848.PubMedCrossRefGoogle Scholar
  60. Mihalyi, E. 1950. The dissociation curves of crystalline myosin. Enzymologia, 14:224–236.PubMedGoogle Scholar
  61. Molinari-Tosatti, M. P., Gotte, L., and Moret, V. 1971. Binding of calcium ions to elastin. Calcif. Tissue Res., 6:329–334.PubMedCrossRefGoogle Scholar
  62. Needham, D. M. and Shoenberg, C. F. 1967. The biochemistry of the myometrium. In: Cellular Biology of the Uterus, pp. 291–352. Ed. by Wynn, R. M. Appleton-Century-Crofts, New York.Google Scholar
  63. Paillard, M. 1972. Direct intracellular pH measurement in rat and crab muscle. J. Physiol., 223:291–319.Google Scholar
  64. Palatý, V. 1971. Distribution of magnesium in the arterial wall. J. Physiol., 218:353–368.PubMedGoogle Scholar
  65. Palatý, V. 1974. Regulation of the cell magnesium in vascular smooth muscle. J. Physiol., 242:555–569.PubMedGoogle Scholar
  66. Palatý, V., Gustafson, B., and Friedman, S. M. 1969. Sodium binding in the arterial wall. Can. J. Physiol. Pharmacol., 47:763–770.Google Scholar
  67. Portzehl, H., Caldwell, P. C., and Rüegg, J. C. 1964. The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochem. Biophys. Acta, 79:581–591.PubMedGoogle Scholar
  68. Reuter, H., Blaustein, M. P., and Haeusler, G. 1973. Na-Ca exchange and tension development in arterial smooth muscle. Phil. Trans. R. Soc. Lond. B, 265:87–94.CrossRefGoogle Scholar
  69. Shimomura, O. and Johnson, F. H. 1969. Properties of the bioluminiscent protein aequorin. Biochemistry, 8:3991–3991.PubMedCrossRefGoogle Scholar
  70. Shporer, M. and Civan, M. M. 1972. Nuclear magnetic resonance of sodium-23 linoleate-water. Basis for an alternative interpretation of Na-23 spectra within cells. Biophys. J., 12:114–122.PubMedCrossRefGoogle Scholar
  71. Sjodin, R. A. and Beauge, L. A. 1973. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells. J. Gen. Physiol., 61:222–250.PubMedCrossRefGoogle Scholar
  72. Somlyo, A. V. and Somlyo, A. P. 1971. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science, 174:955–951.PubMedCrossRefGoogle Scholar
  73. Sparrow, M. P. 1969. Interaction of 28Mg with Ca and K in the smooth muscle of guinea-pig taenia coli. J. Physiol, 205:19–38.PubMedGoogle Scholar
  74. Swift, T. J. and Barr, E. M. 1973. An oxygen magnetic resonance study of water in frog skeletal muscle. Ann. N.Y. Acad Sci., 204:191–196.CrossRefGoogle Scholar
  75. Tait, M. J. and Franks, F. 1971. Water in biological systems. Nature, 230:91–94.PubMedCrossRefGoogle Scholar
  76. Thomas, R. C. 1970. New design for sodium-sensitive glass microelectrode. J. Physiol., 210:82P-83P.PubMedGoogle Scholar
  77. Tomita, T. and Watanabe, H. 1973. Factors controlling myogenic activity in smooth muscle. Phil Trams. R. Soc. Lond. B, 265:73–85.CrossRefGoogle Scholar
  78. Van Breemen, C., Farinas, B. R., Gerba, P., and McNaughton, E. D. 1972. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circulation Res., 30:44–54.PubMedCrossRefGoogle Scholar
  79. Van Breemen, C., Farinas, B., Casteels, R., Gerba, P., Wuytack, F., and Deth, R. 1973. Factors controlling cytoplasmic Ca2 +concentration. Phil. Trans. R. Soc. Lond. B, 265:57–71.CrossRefGoogle Scholar
  80. Veloso, D., Guynn, R. W., Oskarsson, M., and Veech, R. L. 1973. The concentration of free and bound magnesium in rat tissues. Relative constancy of free Mg2+ concentrations. J. Biol. Chem., 248:4811–4819.PubMedGoogle Scholar
  81. Wahlström, B. A. 1973. Ionic fluxes in the rat portal vein and the applicability of the Goldman equation in predicting the membrane potential from flux data. Acta Physiol. Scand., 89:436–448.PubMedCrossRefGoogle Scholar
  82. Walker, J. L. 1971. Ion specific liquid ion exchanger microelectrodes.Anal. Chem., 43:89A-93A.CrossRefGoogle Scholar
  83. Walker, J. L. and Ladle, R. O. 1973. Frog heart intracellular potassium activities measured with potassium microelectrodes. Am. J. Physiol., 225:263–267.PubMedGoogle Scholar
  84. Weinstock, A., King, P. C., and Wuthier, R. E. 1967. The ion-binding characteristics of reconstituted collagen. Biochem. J., 102:983–988.PubMedGoogle Scholar
  85. Yeh, H. J. C., Brinley, F. J., Jr., and Becker, E. D. 1973. Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle. Biophys. J., 13:56–71.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • V. Palaty
    • 1
  • S. M. Friedman
    • 1
  1. 1.Department of AnatomyThe University of British ColumbiaVancouverCanada

Personalised recommendations