Smooth Muscle pp 593-611 | Cite as

Measurement of Adenyl Cyclase and Cyclic AMP

  • H. P. Bär


In recent years a large number of analytical methods for the measurement of cyclic AMP in tissues and of in vitro adenyl cyclase activity have been developed. Many problems inherent in these methods have been recognized and sources of error eliminated In spite of these achievements, investigators frequently encounter problems whenever new techniques are adopted, and much time is then spent in setting up procedures and routines. Such difficulties are not surprising since one is dealing with complex reactions and with minute quantities of analytical material in the presence of many potentially interfering substances.


Cyclic Nucleotide Adenyl Cyclase Activity Cyclic Nucleotide Phosphodiesterase Ethylene Glycol Monomethyl Ether Saturation Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appleman, M. M., Birnbaumer, L., and Torres, H. N. 1966. Factors affecting the activity of muscle glycogen synthetase. Ill: The reaction with adenosine triphosphate, Mg + +and cyclic 3′5′-adenosine monophosphate. Arch. Biochem. Biophys, 116:39–43.PubMedCrossRefGoogle Scholar
  2. Bär, H. P. and Hechter, O. 1969. Adenyl cyclase assay in fat cell ghosts. Anal. Biochem, 29:476–489.PubMedCrossRefGoogle Scholar
  3. Breckenridge, B. M. 1964. The measurement of cyclic adenylate in tissues. Proc. Nat. Acad. Sci (U.S.), 52:1580–1586.PubMedCrossRefGoogle Scholar
  4. Breckenridge, R. M. 1971. Methods of assay of cyclic nucleotides. Ann. N. Y. Acad. Sci, 185:10–17.PubMedCrossRefGoogle Scholar
  5. Brooker, G.1971a. Effect of temperature control on the stability and sensitivity of a high pressure liquid chromatography ultraviolet flow cell detector. Anal. Chem, 43:1095–1097.CrossRefGoogle Scholar
  6. Brooker, G. 1971b. High pressure anion exchange chromatographic measurement of cyclic adenosine 3’,5’-monophosphate and cyclic [14C] adenosine monophosphate specific activity in myocardium prelabeled with [14C] adenosine. J. Biol. Chem, 246:7810–7816.PubMedGoogle Scholar
  7. Brooker, G., Thomas, L. J., and Appleman, M. M. 1968. The assay of adenosine 3’,5’-cyclic monophosphate and guanosine 3’,5’-monophosphate in biological materials by enzymatic radioisotope displacement. Biochemistry, 7:4177–4188.PubMedCrossRefGoogle Scholar
  8. Brown, D. L., Albamo, D. M., Ekins, R. P., and Sgherzi, A. M. 1971. A simple and sensitive saturation assay method for the measurement of adenosine 3’,5’-cyclic monophosphate. Biochem. J, 121:561- 562.PubMedGoogle Scholar
  9. Bueding, E., Butcher, R. W., Hawkins, J., Timms, A. R., and Sutherland, E. W. 1966. Effect of epinephrine on cyclic adenosine 3’,3’-phosphate and hexose phosphates in intestinal smooth muscle. Biochem. Biophys. Acta, 115:173–178.PubMedCrossRefGoogle Scholar
  10. Butcher, R. W. and Sutherland, E. W. 1962. Adenosine 3’,5’-phosphate in biological materials. I. Purification and properties of cyclic 3’,5’-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3’,5’-phosphate in human tissue. J. Biol. Chem, 237: 1244–1250.PubMedGoogle Scholar
  11. Daniel, E. E. and Bolan, J. 1972. Personal communication.Google Scholar
  12. Douša, T. and Rychlik, I. 1968. Adenyl cyclase and adenosine 3’,5’-cyclic phosphate phosphodiesterase in the receptor tissues of neurohypophysial hormones. Life Sci, 7:1039–1044.PubMedCrossRefGoogle Scholar
  13. Douša, T. and Rychlik, I. 1970. The metabolism of adenosine 3’,5’-cyclic phosphate. I. Method for the determination of adenyl cyclase and some properties of the adenyl cyclase isolated from the rat kidney. Biochem. Biophys. Acta, 204:1–9.PubMedCrossRefGoogle Scholar
  14. Drummond, G. I. and Duncan, L. 1970. Adenyl cyclase in cardiac tissue. J. Biol. Chem, 245:976–993.PubMedGoogle Scholar
  15. Ebadi, M. S., Weiss, B., and Costa, E. 1971. Microassay of adenosine-3’,5’-monophosphate (cyclic AMP) in brain and other tissues by the luciferin-luciferase system. J. Neurochem, 18:183–192.PubMedCrossRefGoogle Scholar
  16. Ekins, R. and Newman, B. 1970. Theoretical aspects of saturation analysis. Acta Endocrinol, 64(Suppl. 147): 11–36.Google Scholar
  17. Geddes, B. A., McDonald, J. W. D., Patterson, N. A. M., and Lefcoe, N. M. 1972. Personal communication.Google Scholar
  18. Gilman, A. G. 1970. A protein binding assay for adenosine 3’:5’-cyclic monophosphate. Proc. Nat. Acad. Sci (U.S.), 67:305–312.PubMedCrossRefGoogle Scholar
  19. Goldberg, N. D. and O’Toole, A. G. 1971. Analysis of cyclic 3’,5’-adenosine monophosphate and cyclic 3’,5’-guanosine monophosphate. In: Methods of Biochemical Analysis, Vol. 20, pp. 1–39. Ed. by Glick, E. Interscience-Wiley, New York.CrossRefGoogle Scholar
  20. Goldberg, N. D., Larner, J., Sasko, H., and OToole, A. E. 1969. Enzymatic analysis of cyclic 3’,5’-AMP in mammalian tissues and urine. Anal. Biochem, 28:523–544.PubMedCrossRefGoogle Scholar
  21. Goldberg, N. D., Lust, W. D., O’Dea, R. F., Wei, S., and OToole, A. G. 1970. A role of cyclic nucleotides in brain metabolism. In: Role of Cyclic AMP in Cell Function, Nol 3, pp. 67–87. Ed. by Greengard, P. and Costa, E., Raven Press, New York.Google Scholar
  22. Harbon, S. and Clausner, H. 1971. Cyclic adenosine 3’,5’-monophosphate levels in rat myometrium under the influence of epinephrine, prostaglandins and oxytocin. Correlation with uterine motility. Biochem. Biophys. Res. Commun, 44:1496–1503.PubMedCrossRefGoogle Scholar
  23. Humes, J. L., Rounbehler, M., and Kuehl, F. A. 1969. A new assay for measuring adenyl cyclase in intact cells. Anal. Biochem, 32:210–217.PubMedCrossRefGoogle Scholar
  24. Johnson, R. A., Hardman, J. G., Broadus, A. E., and Sutherland, E. W. 1970. Analysis of 3’,5’-mono- phosphate with luciferase luminescence. Anal. Biochem, 35:91–97.PubMedCrossRefGoogle Scholar
  25. Kidwai, A. M., Radcliffe, M. A., and Daniel, E. E. 1971. Studies on smooth plasma membrane. I. Isolation and characterization of plasma membrane from rat myometrium. Biochem. Biophys. Acta, 233:538- 549.CrossRefGoogle Scholar
  26. Klainer, L. M., Chi, Y. M., Freidberg, S. L., Rall, T. W., and Sutherland, E. W. 1962. Adenyl cyclase IV. The effect of neurohormones on the formation of adenosine 3’,5’-phosphate by preparations from brain and other tissues. J. Biol. Chem, 237:1239–1243.PubMedGoogle Scholar
  27. Kuo, J. F. and DeRenzo, E. C. 1969. A comparison of the effects of lipolytic and antilipolytic agents on adenosine 3’,5’-monophosphate levels in adipose cells as determined by prior labelling with adenine- 8-14C. J. Biol. Chem, 244:2252–2260.PubMedGoogle Scholar
  28. Krishna, G. and Birnbaumer, L. 1970. On the assay of adenyl cyclase. Anal. Biochem, 35:393–397.PubMedCrossRefGoogle Scholar
  29. Krishna, G., Weiss, B., and Brodie, B. B. 1968. A simple, sensitive method for the assay of adenyl cyclase. J. Pharmacol. Exp. Ther, 163:397–385.Google Scholar
  30. Krishna, G., Forn, J., Voigt, K., Paul, M., and Gersa, G. L. 1970. Dynamic aspects of neurohormonal control of cyclic 3’,5’-AMP synthesis in brain. In: Role of Cyclic AMP in Cell Function, Vol. 3, pp. 155- 172. Ed. by Greengard, P. and Costa, E. Raven Press, New York.Google Scholar
  31. McKenzie, S. G. and Bär, H. P. 1972. Unpublished results.Google Scholar
  32. Miyamoto, E., Kuo, J. F., and Greengard, P. 1969. Cyclic nucleotide-dependent protein kinases. III. Purification and properties of adenosine 3’,5’-monophosphate-dependent protein kinase from bovine brain. J. Biol. Chem, 244:6395–6402.PubMedGoogle Scholar
  33. Murad, F., Manganiello, V., and Vaughan, M. 1971. A simple sensitive protein-binding assay for guanosine 3’,5’-monophosphate. Proc. Nat. Acad. Sci (U.S.), 68:736–739.PubMedCrossRefGoogle Scholar
  34. Namm, D. H. and Mayer, S. E. 1968. Effect of epinephrine on cardiac cyclic 3’,5’-AMP Phosphorylase kinase and phosphorylase. Mol Pharmacol, 4:61–69.PubMedGoogle Scholar
  35. O’Dea, R. F., Haddox, M., and Goldberg, N. D. 1970. Enzymatic hydrolysis of cyclic nucletotides at low temperature. Pharmacologist, 12:291.Google Scholar
  36. Polaček, I. and Daniel, E. E. 1971. Effect of α- and β-adrenergic stimulation on the uterine motility and adenosine 3’,5’-monophosphate level. Can. J. Physiol. Pharmacol, 49:988–998.CrossRefGoogle Scholar
  37. Polaček, I., Bolan, J., and Daniel, E. E. 1971. Accumulation of adenosine 3’,5’-monophohosphate and relaxation in the uterus in vitro. Can. J. Physiol. Pharmacol, 49:999–1004.PubMedCrossRefGoogle Scholar
  38. Posner, J. B., Hammermeister, K. E., Bratvold, G. E., and Krebs, E. G. 1964. The assay of adenosine- 3’,5-phosphate in skeletal muscle. Biochemistry, 3:1040–1044.PubMedCrossRefGoogle Scholar
  39. Robison, G. A., Butcher, R. W., and Sutherland, E. W. 1971. Cyclic AMP, 1st ed.. Academic Press, New York.Google Scholar
  40. Rodbell, M., Birnbaumer, L., Pohl, S., and Krans, H. 1971. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem, 246: 1877–1882.PubMedGoogle Scholar
  41. Schönhöfer, P. S., Skidmore, I. F., Forn, J., and Fleisch, J. H. 1971. Adenyl cyclase activity of rabbit aorta. J. Pharm. Pharmacol., 23:28–31.PubMedCrossRefGoogle Scholar
  42. Sheppard, H. 1970. Inhibition of norepinephrine stimulated adenyl cyclase by theophylline. Nature, 228:567–568.PubMedCrossRefGoogle Scholar
  43. Shimizu, H. and Daly, J. 1970. Formation of cyclic adenosine 3’,5’-monophosphate from adenosine in brain slices. Biochem. Biophys. Acta, 222:465–473.PubMedCrossRefGoogle Scholar
  44. Shimizu, H., Daly, J. W. and Creveling, C. R. 1969. A radioisotopic method for measuring the formation of adenosine 3’,5’-cyclic monophosphate in incubated slices of brain. J. Neurochem, 16:1906–1916.CrossRefGoogle Scholar
  45. Steiner, A. C., Kipnis, D. M., Utiger, A., and Parker, C. W. 1969. Radioimmunoassay for the measurement of adenosine 3’,5-cyclic phosphate. Proc. Nat. Acad. Sci (U.S.), 64:367–373.PubMedCrossRefGoogle Scholar
  46. Steiner, A. C., Pagliara, A. S., Chase, L. R., and Kipnis, D. M. 1972a. Radioimmunoassay for cyclic nucleotides, II. Adenosine 3’,5’-monophosphate and guanosine 3’,5’-monophosphate in mammalian tissues and body fluids. J. Biol. Chem, 247:1114–1120.PubMedGoogle Scholar
  47. Steiner, A. C., Parker, C. W., and Kipnis, D. M. 1972b. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J. Biol. Chem, 247:1105–1113.Google Scholar
  48. Szego, C. M. and Davis, 1967. Adenosine 3’,5’-monophosphate in rat uterus: Accute elevation by estrogen. Proc. Nat. Acad. Sci (U.S.), 58:1711–1718.PubMedCrossRefGoogle Scholar
  49. Szego, C. M. and Davis, J. S. 1969. Inhibition of estrogen-induced elevation of cyclic 3’,5’-adenosine monophosphate in rat uterus by beta-adrenergic blocking drugs. Mol. Pharmacol, 5:470–480.PubMedGoogle Scholar
  50. Triner, L., Vulliemoz, Y., Verosky, M., and Nahas, G. G. 1970. The effect of catecholamines on adenyl cyclase activity in rat uterus. Life Sci., 9:707–712.CrossRefGoogle Scholar
  51. Triner, L., Nahas, G. G., Vulliemoz, Y., Overweg, N. I. A., Verosky, M., Habif, D. V., and Ngai, S. H. 1971. Cyclic AMP and smooth muscle function. Ann. N.Y. Acad. Sci, 185:458–476.PubMedCrossRefGoogle Scholar
  52. Weinryb, I. and Michel, I. M. 1971. Divergent effects of theophylline on adenylate cyclase preparations from guinea-pig heart or lung. Experimentia, 27: 1386.CrossRefGoogle Scholar
  53. Weinryb, I., Michel, M., and Hess, S. M. 1972. Radioimmunoassay of cyclic AMP without precipitating antibody. Anal. Biochem, 45: 659–663.PubMedCrossRefGoogle Scholar
  54. Wollenberger, A., Ristau O., and Schoffa, G. 1960. Eine einfache Technick der extreme schnellen Abkühlung grösserer Gewebestücke. Arch. Ges. Physiol, 270: 399–412.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • H. P. Bär
    • 1
  1. 1.Department of PharmacologyUniversity of AlbertaEdmontonCanada

Personalised recommendations