Advertisement

Smooth Muscle pp 555-591 | Cite as

Energy Metabolism : Methods in Isolated Smooth Muscle and Methods at Cellular and Subcellular Levels

  • N. L. Stephens
  • E. A. Kroeger
  • K. Wrogemann

Abstract

In this chapter we propose to describe techniques for studying biochemical reactions which provide energy for performance of work by the smooth muscle cell. These of course are merely the chemical components of chemomechanical processes operative during smooth muscle contraction. The latter, as Mommaerts (1969) has pointed out in the case of muscle, are a special and particularly favorable example of bioenergetics.

Keywords

Smooth Muscle Oxygen Uptake Muscle Strip Arterial Tissue Respiratory Control Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelsson, J. Hoberg, S. G. R. and Timms, A. R. 1965. The effect of removing and re-admitting glucose on the electrical and mechanical activity and glucose and glycogen content of intestinal smooth muscle from the taenia coli of the guinea pig.Acta Physiol. Scand.,6428–48.PubMedCrossRefGoogle Scholar
  2. Barker, S. B. and Summerson, W. H. 1941. The colorimetric determination of lactic acid in biological material.J. Biol. Chem., 138 535–554.Google Scholar
  3. Beaconsfield, P., and Liuzzi, A. 1962. Metabolism of the normal cardiovascular wall.Experientia, 28:276- 277.CrossRefGoogle Scholar
  4. Beatty, C. H., Gasinger, G. M., and Bocek, R. M. 1969. Carohydrate metabolism of myometrium from the pregnant rhesus monkey.J. Reprod. Pert.,19:443–454.CrossRefGoogle Scholar
  5. Bergmeyer, H. U. 1963.Methods of Enzymatic Analysis. 1st ed. Verlag Chemie, Weinheim/Bergstrasse and Academic Press, New York.Methoden der enzymatischen Analyse, 2nd German ed. Weinheim/ Bergstrasse, Verlag Chemie. 1970. 2nd ed. in English: in preparation.Google Scholar
  6. Bloom, B. and Stetten, Jr., D. 1953. Pathways of glucose cataboHsm.J. Am. Chem. Soc., 75:5446.CrossRefGoogle Scholar
  7. Bonsignore, A., Pontremoli, S., Graz, E. and Mangiarott, M. 1959. The formation and cleavage of fructose catalyzed by transaldolase.Biochem. Biophys. Res. Commun., 1:79–82.CrossRefGoogle Scholar
  8. Bozler, E. 1930. The heat production of smooth muscle.J. Physiol., 69:442–462.PubMedGoogle Scholar
  9. Brandstrup, N., Kirk, J. E. and Bruni, C. 1957. The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages.J. Geront., 12:166–171.PubMedCrossRefGoogle Scholar
  10. Bremer, J. 1968. Long chain acyl-carnitines.Biochem. Prep.,12:69–73.Google Scholar
  11. Brendel, D. and Bressler, R. 1967. The resolution of (±) carnitine and the synthesis of acetyl-carnitines.Biochim. Biophys. Acta.,157:98–106.Google Scholar
  12. Bucher, T., Kreju, K., Russman, W., Schnitger, H., and Wesemann, W. 1964. Metabolite assay in frozen samples of liver tissue. In:Rapid Mixing and Sampling Techniques in Biochemistry, pp. 255–264. Ed. by Chance, B. Eisenhardt, R. H. Gibson, Q. H. and Lonberg-Holm, K. K. Academic Press, New York.Google Scholar
  13. Bueding, E. 1964. Biochemical effects of adrenaline on intestinal smooth muscle. In:Control of Glyogen Metabolism, a Ciba Foundation symposium, pp. 247–252. J. and A. Churchill Ltd.Google Scholar
  14. Bueding, E. and Hawkins, J. T. 1964. Enzymic degradation and microdetermination of glycogen.Anal. Biochem., 7:26–36.PubMedCrossRefGoogle Scholar
  15. Bülbring, E. and Golenhofen, K. 1967. Oxygen consumption in the isolated smooth muscle of guinea-pig taenia coli.Physiol., 795:213–224.Google Scholar
  16. Cain, D. F. and Davies, R. E. 1962. Breakdown of adenosine triphosphate during a single contraction of working muscle.Biochem. Biophys. Res. Commun., 361–366.Google Scholar
  17. Carr, C. J. Bell, F. K.Hurst, J. N. and Krantz, Jr. J. C. 1954. Myokinase activity of coronary arteries.Circ. Res.,2:516–519PubMedCrossRefGoogle Scholar
  18. Carr, C. J., Bell, F. K., Rehak, M. J., and Krantz, Jr., J. C. 1955. Effect of drugs on myokinase activity of coronary arteries.Proc. Soc. Exp. Biol. Med., 89:184–186.PubMedGoogle Scholar
  19. Chance, B. and Williams, G. R. 1956. The respiratory chain and oxidative phosphorylation.Advan. Enzymol., 77:65–134.Google Scholar
  20. Clinch, N. F. 1968. On the increase in rate of heat production caused by stretch in frog’s skeletal muscle.J. Physiol, 196:391–414.Google Scholar
  21. Coe, J., De, R., and Bohr, D. F., 1968. Substrates and vascular smooth muscle contraction.Am. J. Physiol., 214 245–250.PubMedGoogle Scholar
  22. Colowick, S. P. add Kaplan, N. O., eds. 1967.Methods in Enzymology, Vols. I, II, V, IX, X, XIII. Academic Press, New York.Google Scholar
  23. Danforth, W. H., Helmreich, E., and Cori, C. F. 1962. The effect of contraction and of epinephrine on the Phosphorylase activity of frog sartorius muscle.Proc. Nat. Acad. Sci. (U.S.), 48:1191–1199.PubMedCrossRefGoogle Scholar
  24. Dubois, M. Gilles, K. A. Hamilton, J. K. Rebers, P. A. and Smith, F. 1965. Colorimetric method for determination of sugars and related substances.Anal. Chem., 28:350–356.CrossRefGoogle Scholar
  25. Elias, H. and Henning, H. A. 1967. Stereology of the human renal glomerulus. In:Quatitative Methods in Morphology, pp. 130–166. Ed. by Weibel, E. and Elias, H. Springer, Berlin.Google Scholar
  26. Elias, H. Henning, A. and Schwartz, D. E. 1971. Stereology: Applications to biomedical research.Physiol. Rev.,51:158–200.PubMedGoogle Scholar
  27. Estabrook, R. W. 1967. Mitochondrial respiratory control and the Polarographie measurement of ADP: O ratios. In:Methods in Enzymology, Vol. X, pp. 41–47. Ed. by Estabrook, R. W. and Pullman, M. E. Academic Press, New York.Google Scholar
  28. Evans, C. L. 1923–1924. Studies on the physiology of plain muscle. II. The oxygen usage of plain muscle and the relation to tonus.J. Physiol,58:22–32.Google Scholar
  29. Fawaz, E. N., Fawaz, G., and von Dahl, K. 1962. Enzymatic estimation of phosphocreatine.Proc. Soc. Exp. Biol. Med., 709:38–41.Google Scholar
  30. Fawaz, G. and Fawaz, E. N. 1971. Phosphate compound analyses. In:Methods in Pharmacology, Vol. 1, pp. 515–551. Ed. by Schwartz, A. Appleton-Century-Crofts, New York.Google Scholar
  31. Focant, B. 1968. Purification et compartement a I’electrophorese sur gel d’amidon de la creatine cinase de carotides de bovide.Arch. Int. Physiol.,76:373–374.Google Scholar
  32. Focant, B. 1970. Isolement et proprietes de la creatine-kinase de muscle lisse de boeuf.FEBS Letters, 10:57–61.PubMedCrossRefGoogle Scholar
  33. Friedemann, T. E., and Graeser, J. B. 1933. The determination of lactic acid.J. Biol. Chem. 100:291–308.Google Scholar
  34. Furchgott, R. F. 1966. Metabolic factors that influence contractility of vascular smooth muscle.Bull. N. Y. Acad. Med., 42:996–1006.PubMedGoogle Scholar
  35. Gautheron, D., Gaudemer, Y., and Zajdela, F. 1961. Isolement de sarcosomes d’uterus de pore et leurs proprietes oxydophosphorylantes comparees a celles de sarcosomes de coeur.Bull. Soc. Chim. Biol., 43:193–205.PubMedGoogle Scholar
  36. Hackenbrock, C. R. 1966. Ultrastructural basis for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria.J. Cell. Biol.,30:269–291.PubMedCrossRefGoogle Scholar
  37. Hackenbrock, C. R. 1968. Ultrastructural basis for metabolically linked mechanical activity in mitochondria. II. Electron transport linked ultrastructural transformations in mitochondria.J. Cell. Biol, 37:345–369.PubMedCrossRefGoogle Scholar
  38. Hestrin, S. 1964. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application.J. Biol Chem.,180:240–261.Google Scholar
  39. Hill, A. V. 1931. Myothermic experiments on a frog gastrocnemius.Proc. R. Soc. Lond. B, 109:267–303.CrossRefGoogle Scholar
  40. Hill, A. V. 1965.Trails and Trials in Physiology, pp. 208–241. Edward Arnold, London.Google Scholar
  41. Hohorst, H. J. 1963. L-(+)-lactate determination with lactic dehydrogenase and DPN. In:Methods of Enzymatic Analysis, pp. 266–270. Ed. by Bergmeyer, H. V. Academic Press, New York.Google Scholar
  42. Howard, R. O., Richardson, D. W., Smith, M. H., and Patterson, J. L. 1965. Oxygen consumption of arterioles and venules as studied in the Cartesian diver.Circ. Res., 16:187–196.PubMedCrossRefGoogle Scholar
  43. Johnson, J. A. and Fusaro, R. M. 1970. Enzymic analysis of rabbit skeletal muscle carbohydrate.Anal Biochem., 37:298–312.PubMedCrossRefGoogle Scholar
  44. Katz, M. and Wood, H. G. 1963. The use of14CO2yields from glucose-1- and -6-14C for the evaluation of the pathways of glucose metabolism.J. Biol Chem.,238:515–523.Google Scholar
  45. Kirk, J. E. 1959. The ribose-5-phosphate isomerase activity of arterial tissue in individuals of various ages.J. Geront.,14:447–449.PubMedCrossRefGoogle Scholar
  46. Kirk, J. E. 1960. The isocitrate dehydrogenase and TPN-malic enzyme activities of arterial tissue in individuals of various ages.J. Geront., 15:262–266.PubMedCrossRefGoogle Scholar
  47. Kirk, J. E. 1961. The aconitase activity of arterial tissue in individuals of various ages.J. Geront.,16:25–28.PubMedCrossRefGoogle Scholar
  48. Kirk, J. E. 1962. Variation with age in the creatine phosphokinase activity of human aortic tissue.J. Geront.,17:369–372.PubMedCrossRefGoogle Scholar
  49. Kirk, J. E. 1963. Transketolase activity in human arterial and venous tissue.J. Lab. Clin. Med.,68:888- 889.Google Scholar
  50. Kirk, J. E. 1966a. Citrate condensing enzyme activity of human arterial and venous tissue.Lab. Clin. Med.,68:888–889.Google Scholar
  51. Kirk, J. E. 1966b. The phosphoglucomutase, phosphoglyceric acid mutase, and phosphomannose isomerase activities of arterial tissue in individuals of various ages.J. Geront., 27:420–425.CrossRefGoogle Scholar
  52. Kirk, J. E. 1967. Transaldolase and aldose reductase activities of human vascular tissue.J. Lab. Clin. Med.,70:889.Google Scholar
  53. Kirk, J. E. and Laursen, T. J. S. 1955. Diffusion coefficients of various solutes for human aortic tissue, with special reference to variation in tissue permeability with age.J. Geront., 70:288–302.CrossRefGoogle Scholar
  54. Kirk, J. E. and Ritz, E. 1966. Phosphoglyceric kinase in human vascular tissue.Proc. Soc. Exp. Biol Med., 122:1201–1204.PubMedGoogle Scholar
  55. Kirk, J. E. and Ritz, E. 1967. The glyceraldehyde-3-phosphate and a-glycerophosphate dehydrogenase activities of arterial tissue in individuals of various ages.J. Geront., 22:427–432.PubMedCrossRefGoogle Scholar
  56. Kirk, J. E. and Sorensen. 1956. The aldolase activity of aortic and pulmonary artery tissue in individuals of various ages.J. Geront., 77:373–378.CrossRefGoogle Scholar
  57. Kirk, J. E., Effersoe, P. G. and Chiang, S. P. 1954. The rate of respiration and glycolysis by human and dog aortic tissue.J. Geront., 9:10–35.PubMedCrossRefGoogle Scholar
  58. Kirk, J. E., Wang, I., and Brandstrup, N. 1959. The glucose-6-phosphate and 6-phosphogluconate dehydrogenase activities of arterial tissue in individuals of various ages.J. Geront.,14:25–31.PubMedCrossRefGoogle Scholar
  59. Klingenberg, M. 1964. Muskelmitochondrien! Ergeb.Physiol. Biol. Chem. Exptl. Pharmakol., 55:131–189.Google Scholar
  60. Korman, E. F., Addink, A. D. F., Wakabayashi, T., and Green, D. E. 1970. A unified model of mitochondrial morphology.Bioenergetics, 1:9–32.CrossRefGoogle Scholar
  61. Kosan, R. L. and Burton, A. C. 1966. Oxygen consumption of arterial smooth muscle as a function of active tone and passive stretch,Circ. Res.,18: 79–88.PubMedCrossRefGoogle Scholar
  62. Kroeger, E. A. 1970. Mechanisms of action of hypoxia in airway smooth muscle: effect on energy and calcium metabolism. Ph.D. thesis, Univ. of Manitoba.Google Scholar
  63. Kroeger, E. A. and Stephens, N. L. 1971. Effect of hypoxia on energy metaboHsm in airway smooth muscle.Am. J. Physiol, 220:1199–1024.PubMedGoogle Scholar
  64. Krogh, A. 1918–1919. The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion.J. Physiol, 52:391–408.PubMedGoogle Scholar
  65. Laursen, T. J. S. and Kirk, J. E. 1955. The presence of aconitase and fumarase in human aortic tissue.J. Geront., 70:26–30.CrossRefGoogle Scholar
  66. Larrabee, M. G., Ramos, J. G., and Bulbring, E. 1952. Effects of anesthetics on oxygen consumption and on synaptic transmission in sympathetic ganghon.J. Cell Comp. Physiol, 40:461–494.CrossRefGoogle Scholar
  67. Le Fevre, M. E. 1969. Calibrations of Clark oxygen electrode for use in aqueous solutions.J. Appl Physiol,26:844–846.Google Scholar
  68. Lehninger, A. L. 1970a. Biochemistry—The Molecular Basis of Cell Structure and Function. Worth Publishers, New York.Google Scholar
  69. Lehninger, A. L. 1970b. Mitochondria and calcium ion transport.Biochem. J., 119:129–138.PubMedGoogle Scholar
  70. Li Henthal, Jr., J. L., Zierler, K. L., Folk, B. P., Buka, R., and Riley, M. J. 1950. A reference base and system for analysis of muscle constituents.J. Biol Chem.,182:501–508.Google Scholar
  71. Lowenstein, J. M. 1972. Ammonia production in muscle and other tissues: the purine nucleotide cycle.Physiol Rev.,52:382–414.Google Scholar
  72. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1957. Protein measurement with the FoHn phenol reagents.J. Biol Chem., 193:265–275.Google Scholar
  73. Lowry, O. H., Schulz, D. W. and Passonneau, J. V. 1964. Effects of adenylic acid on the kinetics of muscle Phosphorylasea.J. Biol Chem.,239:1947–1953.PubMedGoogle Scholar
  74. Lundholm, L. and Mohme-Lundholm, E. 1962. The effects of adrenaline and glucose on the content of high-energy phosphate esters in substrate-depleted vascular smooth muscle.Acta Physiol Scand.,56:130–139.PubMedCrossRefGoogle Scholar
  75. Lundholm, L., Mohme-Lundholm, E., and Vamos, N. 1963a. Lactic acid assays with L(+) lactic acid dehydrogenase from rabbit muscle.Acta Physiol Scand., 58:243–249.PubMedCrossRefGoogle Scholar
  76. Lundholm, L., Mohme-Lundholm, E., and Svedmyr, N. 1963b. Comparative investigation of methods for determination of lactic acid in blood and in tissue extracts.Scand. J. Clin. Lab. Invest., 75:311–316.CrossRefGoogle Scholar
  77. Luh, W. and Henkel, E. 1965. Content and distribution of phosphotransferases in the human skeletal and uterine musculature. Z.Geburtsh. Gynaekol,183279–288.Google Scholar
  78. Mandel, P. and Kempf, E. 1963. The pentose phosphate pathway in the degradation of glucose by aortic tissue.J. Atheroscler. Res., 5:233–236.CrossRefGoogle Scholar
  79. Matzke, J. R., Kirk, J. E., and Wang, L 1957. The lactic and malic dehydrogenase activities of aortic and pulmonary artery tissue in individuals of various ages.J. Geront., 72:279–283.CrossRefGoogle Scholar
  80. Mohme-Lundholm, E. 1962. Phosphorylase activity of smooth muscle.Acta Physiol Scand.,54200–208.PubMedCrossRefGoogle Scholar
  81. Mohme-Lundholm, E. 1963. Smooth muscle Phosphorylase and enzymes affecting its activity.Acta Physiol Scand., 5974–84PubMedCrossRefGoogle Scholar
  82. Mommaerts, W. F. H. M. 1969. Energetics of muscular contraction.Pharmacol Rev.,49:427–508.Google Scholar
  83. Montgomery, R. 1957. Determination of glycogen.Arch. Biochem., 67:378–386.PubMedCrossRefGoogle Scholar
  84. Morrison, E. S., Scott, R. F., Kroms, M., and Pastori, S. J. 1970. A method for isolating aortic mitochondria exhibiting high respiratory control.Biochem. Med.,4 47–54.PubMedCrossRefGoogle Scholar
  85. Murphy, R. A., Bohr, D. F., and Newman, D. L. 1969. Arterial actomyosin: Mg, Ca, and ATP ion dependencies for ATPase activity.Am. J. Physiol,217:666–613.PubMedGoogle Scholar
  86. Nöda, L. 1962. Nucleoside triphosphate-nucleoside monophosphokinases. In:The Enzymes, 2nd. ed. Vol. VI, p. 139. Ed. by Boyer, P. D., Lardy, H., and Myrbäck, K. Academic Press, New York.Google Scholar
  87. Pande, S. V. and Blanchaer, M. C. 1971. Carbohydrate and fat in energy metabolism of red and white muscle.Am. J. Physiol, 220:549–553.PubMedGoogle Scholar
  88. Pantesco, V., Kempf, E., Mandel, P., and Fontaine, R. 1962. Etudes metaboliques comparees des parois arterielles et veineuse chez les bovides. Leurs variations au cours du vieillissement.Pathol Biol, 70:1301–1306.Google Scholar
  89. Paton, D. M. 1968. Effects of metabolic inhibitors on contraction of rabbit detrusor muscle.Br. J. Pharmacol,34:493–498.PubMedCrossRefGoogle Scholar
  90. Pletscher, A., Staub, H., Hunzinger, W., and Hess, W. 1950. Zum Kohlenhydratstaffwechsel. I. Mitteilung.Helv. Physiol Acta,8306–316.Google Scholar
  91. Ritz, E. and Kirk, J. E. 1969. The phosphofructokinase and sorbitol dehydrogenase activities of arterial tissue in individuals of various ages.J. Geront., 22:433–438.Google Scholar
  92. Ritz, E. 1968. Der Pentosezyklus in Arteriengewebe.J. Atheroscler. Res.,8445–453.PubMedCrossRefGoogle Scholar
  93. Sbarra, A. J., Gilfillan, R. F., and Bardavil, W. A. 1960. The hexosemonophosphate pathway in arterial tissue.Biochem. Biophys. Res. Commun., 5:311–313.CrossRefGoogle Scholar
  94. Schaitman, C. Erwin, V. G. and Greenawalt, J. W. 1967. The sub-mitochondrial locaHzation of mon- amine oxidase: an enzymatic marker for the other membrane of rat liver mitochondria.J. Cell Biol.,32:119–135.Google Scholar
  95. Singhal, R. L. and Valadares, J. R. E. 1970. Estrogenic regulation of uterine pyruvate kinase.Am. J. Physiol,218:321–321.PubMedGoogle Scholar
  96. Skidmore, W. D. and Entenman, C. 1962. The determination of esterified fatty acids in glycerides, cholesterol ester and phosphatides.J. Lipid Res.,3356–363.Google Scholar
  97. Slater, E. C. 1967. Manometric methods and phosphate determination. In:Methods in Enzymology, Vol. X, pp. 19–29. Ed. by Estabrook, R. W. and Pullman, M. E. Academic Press, New York.Google Scholar
  98. Slater, E. C. 1967. Application of inhibitors and uncouplers for a study of oxidative phosphorylation. In:Methods in Enzymology, pp. 48–57. Ed. by Estabrook, R. W. and Pullman, M. E. Academic Press, New York.Google Scholar
  99. Somlyo, A. P. and Somlyo, A. V. 1968. Vascular smooth muscle I. Normal structure, pathology, biochemistry and biophysics.Pharmacol Rev., 20:197–272.PubMedGoogle Scholar
  100. Sordahl, L. A., Johnson, C., Blailock, Z. R., and Schwartz, A. 1971. The mitochondria. In:Methods in Pharmacology, Vol. 1. Ed. by Schwartz, A. Appleton-Century, Crofts, New York.Google Scholar
  101. Srere, P. A., Brazil, H., and Gonen, L. 1963. Citrate condensing enzyme of pigeon breast muscle and moth flight muscle.Acta Chem. Scand., 17(Suppl. 1): 129–134.CrossRefGoogle Scholar
  102. Stainsby, N. W., Fales, J. T., and Lilienthal, Jr., J. L. 1956.Bull Johns Hopkins Hosp., 99:249.PubMedGoogle Scholar
  103. Stephens, N. L. and Kroger, E. 1970. Effect of hypoxia on airway smooth muscle mechanics and electro- physiology.J. Appl Physiol, 25:630–635.Google Scholar
  104. Stephens, N. L. and Wrogemann, K. 1970. Oxidative phosphorylation in smooth muscle.Am. J. Physiol, 279:1796–1801.Google Scholar
  105. Stephens, N. L., Kroeger, E., and Mehta, J. A. 1969. Force-velocity characteristics of respiratory airway smooth muscle.J. Appl Physiol, 26:685–692.PubMedGoogle Scholar
  106. Strominger, J. L. and Lowry, O. H. 1955. The quantitative histochemistry of brain. IV. Lactic, malic, and glutamic dehydrogenases.J. Biol Chem., 275:635–646.Google Scholar
  107. Umbreit, W. W., Burris, R. H., Stauffer, J. F. 1964.Manometric Techniques, 4th ed. Burgess Pubhshing Co., Minneapolis, Minnesota.Google Scholar
  108. Waalas, O. and Waalas, E. 1950. The metabolism of uterine muscle studied with radioactive phosphorus.Acta Physiol Scand., 21:18–26.CrossRefGoogle Scholar
  109. Wakabayashi, T., Hatase, O., Allman, D. W., Smoly, J. M., and Green, D. E. 1970. On the stabilization by fixation of configurational states in beef heart mitochondria.Bioenergetics, 7:527–549.CrossRefGoogle Scholar
  110. Wakid, N. W. 1960. Cytoplasmic fractions of the rat myometrium. I. General description and some enzymic properties.Biochem. J.,76:88–95.PubMedGoogle Scholar
  111. Wang, I. and Kirk, J. E. 1959. The enolase activity of arterial tissue in individuals of various ages.J. Geront.,14:444–446.PubMedCrossRefGoogle Scholar
  112. Wertheimer, H. E. and Ben-Tor, V. 1961. Physiologic and pathologic influences on the metabolism of rat aorta.Ore. Res., 9:23–28.Google Scholar
  113. Woledge, R. C. 1961. The thermoelastic effect of change of tension in active muscle.J. Physiol, 155:187- 208.PubMedGoogle Scholar
  114. Wollenberger, A. Ristan, O. and Schoffa, G. 1960. Eine einfache Technik der extrem schnellen Abkühlung grösserer Gewebestücke.Pflügers Arch., 270:399–412.CrossRefGoogle Scholar
  115. Wrogemann, K. 1970.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • N. L. Stephens
    • 1
  • E. A. Kroeger
    • 1
  • K. Wrogemann
    • 1
  1. 1.Departments of Physiology and Biochemistry, Faculty of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations