Smooth Muscle pp 519-540 | Cite as

Models of Smooth Muscle Electrical Activity

  • S. K. Sarna


Modeling has been used as a tool in elucidating complicated and intricate biological phenomena for a long time. A model could be as simple as a diagrammatic representation of the true phenomenon, but more usually it involves networks of electrical and/or mechanical components, mathematical equations, or computer simulations. Whatever form the model may take, it has two basic requirements:
  1. (1)

    A model must be simpler than the phenomenon being modeled or else the analysis of the model might even be more difficult than that of the phenomenon itself. Under such circumstances a model will serve little useful purpose. To achieve a model simpler than the true phenomenon, it is natural that some simplifying assumptions have to be made.



Relaxation Oscillator Membrane Resistance Intrinsic Frequency Cable Model Spontaneous Electrical Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, Y. add Tomita, T. 1968. Cable properties of smooth muscle. J. Physiol., 196:87–100.PubMedGoogle Scholar
  2. Barr, L. 1959. Distribution of ions in intestinal smooth muscle. Proc. Soc. Exp. Biol. Med., 101:283–285.PubMedGoogle Scholar
  3. Barr, L. and Malvin, R. L. 1965. Estimation of extracellular spaces of smooth muscle using different sized molecules.Am. J. Physiol, 208:1042–1045.PubMedGoogle Scholar
  4. Bortoff, A. 1961. Slow potential variations of small intestine. Am. J. Physiol, 207(1): 203–208.Google Scholar
  5. Caesar, R., Edwards, G. A., and Ruska, H. 1957. Architecture and nerve supply of mammalian smooth muscle tissue. J. Biophys. Biochem. Cytol, 31:867CrossRefGoogle Scholar
  6. Daniel, E. E. Duchon, and Henderson, R. M. 1972. The ultrastructural bases for coordination of intestinal motility. Am. J. Digest. Dis. Ner. Series., 17(4): 289–298.CrossRefGoogle Scholar
  7. Dewey, M. M. 1965. The anatomical basis of propagation in smooth muscle.Gastroenterology, 49(4): 395- 402.PubMedGoogle Scholar
  8. Diamant, N. E., Rose, P. K., and Davison, E. J. 1970. Computer simulation of intestinal slow wave frequency gradient. Am. J. Physiol, 219:1684–1690.PubMedGoogle Scholar
  9. George, E. P. 1961. Resistance values in a syncytium. Austral J. Expt. Biol Med. Sci., 39:267–274.CrossRefGoogle Scholar
  10. Heppner, D. B. and Plonsey, R. 1970. Simulation of electrical interaction of cardiac cells. Biophys. J., 10(11): 1057–1075.PubMedCrossRefGoogle Scholar
  11. Hodgkin, A. and Huxley, A. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 177:500–544.Google Scholar
  12. Kobayashi, M., Prosser, C. L., and Nagai, T. 1967. Electrical properties of intestinal muscle as measured intracellularly and extracellularly. Am. J. Physiol, 213:275–286.PubMedGoogle Scholar
  13. Koide, F. T. 1967. Determination of intercellular bridge resistance in smooth muscle by measurement of injury and sucrose-gap potentials. J. Theor. Biol, 16:268–279.PubMedCrossRefGoogle Scholar
  14. Merrillees, N. C. R., Burnstock, G., and Holman, M. E. 1963. Correlation of fine structure and physiology of the innervation of smooth muscle in the guinea pig vas deferens. J. Cell Biol, 19:529–550.PubMedCrossRefGoogle Scholar
  15. Nagai, T. and Prosser, C. L. 1963. Electrical parameters of smooth muscle cells. Am. J. Physiol, 204915- 924.PubMedGoogle Scholar
  16. Nelsen, T. S. and Becker, J. C. 1968. Simulation of the electrical and mechanical gradient of the small intestine. Am. J. Physiol, 214:749–751PubMedGoogle Scholar
  17. Noble, D. 1966. Applications of Hodgkin-Huxley equations to excitable tissues. Physiol Rev. 46:1–50.PubMedGoogle Scholar
  18. Prosser, C. L. Burnstock, G., and Kahn, J. 1960. Conduction in smooth muscle. Comparative structural properties. Am. J. Physiol, 799(3): 545–552.Google Scholar
  19. Rhodin, J. A. G. 1962. Fine structure of vascular walls in mammals.Physiol Rev(Suppl 5), 45:48.Google Scholar
  20. Sarna, S. K., Daniel, E. E., and Kingma, Y. J. 1971. Simulation of slow wave electrical activity of small intestine. Am. J. Physiol, 221166–175.Google Scholar
  21. Sarna, S. K., Daniel, E. E., and Kingma, Y. J. 1972a. Simulation of the electrical control activity of the stomach by an array of relaxation oscillators. Am. J. Digest. Dis., 17(4): 299–310.PubMedCrossRefGoogle Scholar
  22. Sarna, S. K., Daniel, E. E., and Kingma, Y. J. 1972b. Premature control potentials in the dog stomach and in the gastric computer model. Am. J. Physiol, 2221518–1523.PubMedGoogle Scholar
  23. Sarna, S. K., Daniel, E. E., and Kingma, Y. J. 1972c. Effects of partial cuts on gastric electrical control activity and its computer model. Am. J. Physiol, 223:332–340.PubMedGoogle Scholar
  24. Shaw, T. I. 1964. Core conductor properties of tissue reticulum. In: A Collection of Papers Presented to Sir Charles Lovatt Evans F.R.S. (Pastor), pp. 159–166. CDEE Press, Wiles, England.Google Scholar
  25. Sperelakis, N. and Tarr, M. 1965. Weak electronic interaction between neighboring visceral smooth muscle cells.Am. J. Physiol, 208:737–747PubMedGoogle Scholar
  26. Tomita, T. 1966. Membrane capacity and resistance of mammaHan smooth muscle. J. Theor. Biol, 12:216- 227.PubMedCrossRefGoogle Scholar
  27. Vayo, H. W. 1965. Determination of the Electrical Parameters of Vertibrate Smooth Muscle. J. Theor. Biol, 9:263–277.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • S. K. Sarna
    • 1
  1. 1.Department of Electrical EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations