Smooth Muscle pp 247-260 | Cite as

Recording of Intracellular Electrical Activity with the Voltage-Clamp Technique with Double Sucrose Gap

  • R. F. Coburn
  • M. Ohba
  • T. Tomita


In most nerve fibers, when depolarization of the membrane once reaches the critical firing level, the action potential is produced in an explosive manner. According to the ionic theory, this is due to dependence of the Na conductance on the membrane potential; i.e., the Na conductance is increased by depolarization allowing inward Na current and this inward movement of positive ions in turn depolarizes the membrane further, the process thus being regenerative. Therefore, in order to fully analyze the relationship between the membrane potential and ionic conductances, it is necessary to prevent the membrane potential from moving and to clamp it at constant selected values with a special device. This “voltage-clamp” method provides another advantage. Since the membrane has resistive and capacitive components in parallel, the current flowing across the membrane is divided into resistive (ionic) current and capacitive current whenever changes in the membrane potential occur. However, under the ideal voltage-clamp condition, the capacitive current can be eliminated, except in a transient phase of the potential step since this current is proportional to the rate of potential change, and thus measurements of ionic current become possible.


Membrane Potential Voltage Clamp Membrane Conductance Giant Axon Capacitive Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, N. C. 1969. Voltage-clamp studies on uterine smooth muscle. J. Gen. Physiol., 54:145–165.PubMedCrossRefGoogle Scholar
  2. Anderson, N. C., Ramon, F., and Snyder, A. 1971. Studies on calcium and sodium in uterine smooth muscle excitation under current-clamp and voltage-clamp conditions. J. Gen. Physiol., 58:322–339.PubMedCrossRefGoogle Scholar
  3. Beeler, G. W. and Reuter, H. 1970a. Voltage clamp experiments on ventricular myocardial fibres. J. Physiol., 207:165–190.PubMedGoogle Scholar
  4. Beeler, G. W. and Reuter, H. 1970b. Membrane calcium current in ventricular myocardial fibres. J. Physiol., 207: 191–209.PubMedGoogle Scholar
  5. Brading, A., Bülbring, E., and Tomita, T. 1969. The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J. Physiol., 200:637–654.PubMedGoogle Scholar
  6. Brown, H. F. and Noble, S. J. 1969. Membrane currents underlying delayed rectification and pace-maker activity in frog atrial muscle. J. Physiol., 204:717–736.PubMedGoogle Scholar
  7. Cole, K. S. 1949. Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol., 3:253–258.Google Scholar
  8. Cole, K. S. 1961. An analysis of the membrane potential along a clamped squid axon. Biophys. J., 1:401–418.PubMedCrossRefGoogle Scholar
  9. Cole, K. S. and Moore, J. W. 1960. Ionic current measurements in the squid giant axon membrane. J. Gen. Physiol, 44:123–167.PubMedCrossRefGoogle Scholar
  10. Deck, K. A., Kern, R. and Trautwein, W. 1964. Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch., 280.50–62.CrossRefGoogle Scholar
  11. Dodge, F. A. and Frankenhaeuser, B. 1958. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol., 143:76–90.PubMedGoogle Scholar
  12. Dudel, J. and Rüdel, R. 1970. Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflügers Arch., 315:136–158.PubMedCrossRefGoogle Scholar
  13. Giebisch, G. and Weidmann, S. 1971. Membrane currents in mammalian ventricular heart muscle fibers using a voltage-clamp technique. J. Gen. Physiol., 57:290–296.PubMedCrossRefGoogle Scholar
  14. Goto, M., Kimoto, Y., and Kato, Y. 1971. A study on the excitation-contraction coupling of the bullfrog ventricle with voltage clamp technique. Jap. J. Physiol., 21:159–173.CrossRefGoogle Scholar
  15. Haas, H. G., Kern, R., and Einwächter, H. M. 1970. Electrical activity and metabolism in cardiac tissue. An experimental and theoretical study. J. Membrane Biol., 3:180–209.CrossRefGoogle Scholar
  16. Hodgkin, A. L. and Huxley, A. F. 1952a. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol., 116:449–412.PubMedGoogle Scholar
  17. Hodgkin, A. L. and Huxley, A. F. 1952b. The components of membrane conductance in the giant axon of Loligo. J. Physiol., 116:413–496.Google Scholar
  18. Hodgkin, A. L. and Huxley, A. F. 1952c. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol, 116:497–506.PubMedGoogle Scholar
  19. Hodgkin, A. L. and Huxley, A. F. 1952d. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol, 117:500–544.PubMedGoogle Scholar
  20. Hodgkin, A. L., Huxley, A. F., and Katz, B. 1949. Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol, 3:129–150.Google Scholar
  21. Johnson, E. A. and Lieberman, M. 1971. Heart: excitation and contraction. Ann. Rev. Physiol., 33:479–532.CrossRefGoogle Scholar
  22. Kao, C. Y. 1971. Some new leads into the physiology of mammalian smooth muscles. In: Research in Physiology, pp. 365–372. Ed. by Kao, F. F., Koisumi, K. and Vassalle, M. Aulo Gaggi, Bologna, Italy.Google Scholar
  23. Kumamoto, M. and Horn, L. 1970. Voltage clamping of smooth muscle from taenia coli. Microvasc. Res., 2:188–201.PubMedCrossRefGoogle Scholar
  24. Mascher, D. and Peper, K. 1969. Two components of inward current in myocardial muscle fibers. Pflügers Arch.,307:190–203.PubMedCrossRefGoogle Scholar
  25. Morad, M. and Orkland, R. K. 1971. Excitation-contraction coupling in frog ventricle: Evidence from voltage clamp studies. J. Physiol., 219:167–189.PubMedGoogle Scholar
  26. Morad, M. and Trautwein, W. 1968. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflügers Arch., 299:66–82.CrossRefGoogle Scholar
  27. Rougier, O., Vassort, G., and Stämpfli, R. 1968. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflügers Arch., 301:91–108.CrossRefGoogle Scholar
  28. Tarr, M. 1971. Two inward currents in frog atrial muscle. J. Gen. Physiol., 55:532–543.Google Scholar
  29. Tarr, M. and Trank, J. 1971. Equivalent circuit of frog atrial tissue as determined by voltage clamp-unclamp experiments. J. Gen. Physiol., 58:511–522.PubMedCrossRefGoogle Scholar
  30. Tasaki, I. and Bak, A. 1958. Current-voltage relations of single nodes of Ranvier as examined by voltage-clamp technique. J. Neurophysiol., 21:124–137.PubMedGoogle Scholar
  31. Vassort, G. and Rougier, O. 1972. Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflügers Arch., 331:191–203.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. F. Coburn
    • 1
  • M. Ohba
    • 1
  • T. Tomita
    • 1
  1. 1.Department of Physiology Faculty of MedicineKyushu UniversityFukuokaJapan

Personalised recommendations