Smooth Muscle pp 231-245 | Cite as

Recording of Intracellular Electrical Activity with the Sucrose-Gap Method

  • R. F. Coburn
  • M. Ohba
  • T. Tomita


In smooth muscles, electrical measurements with intracellular microelectrodes are rather difficult, owing to the small size of the muscle fibers, particularly if it is necessary to continuously observe changes produced by drugs or by modification of external ion concentrations. Therefore, the sucrose-gap method, which utilizes external electrodes, is widely employed for physiological and pharmacological studies in smooth muscles. The sucrose-gap method was originally described for myelinated nerve fibers by Stämpfli (1954), and has subsequently been applied to other tissues (Ritchie and Straub, 1956; Julian et al., 1962).


Membrane Potential Sucrose Solution Membrane Resistance Liquid Junction Potential Myelinated Nerve Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, Y. and Tomita, T. 1968. Cable properties of smooth muscle. J. Physiol., 196:87–100.PubMedGoogle Scholar
  2. Bennett, M. R. and Burnstock, G. 1966. Application of the sucrose-gap method to determine the ionic basis of the membrane potential of smooth muscle. J. Physiol., 183: 637–648.PubMedGoogle Scholar
  3. Bennett, M. R., Burnstock, G., and Holman, M. E. 1963. The effect of potassium chloride ions on the inhibitory potential recorded in the guiea-pig taenia coli. J. Physiol., 169:33–34P.Google Scholar
  4. Berger, W. 1960. Registrierung von Membranpotentialänderungen glatter Ringmuskel-fasern des Froschmagens beim Einfluss verschiedener lonenkonzentrationen. Pflügers Arch., 272:37.CrossRefGoogle Scholar
  5. Berger, W. 1963. Die Doppelsaccharosetrennwandtechnik: Eine Methode zur Untersuchung des Membranpotentials und der Membraneigenschaften glatter Muskelzeller. Pflügers Arch. Ges Physiol., 277:570–576.CrossRefGoogle Scholar
  6. Blaustein, M. P. and Goldman, D. E. 1966. Origin of axon membrane hyperpolarization under sucrose-gap. Biophys.J.,6:453–470PubMedCrossRefGoogle Scholar
  7. Brading, A. F. and Tomita, T. 1968. Volume changes of the smooth muscle of the guinea-pig taenia coli, and the influence of calcium. J. Physiol., 197:68–69P.Google Scholar
  8. Brading, A., Bülbring, E., and Tomita, T. 1969a. The effect of temperature on the membrane conductance of the smooth muscle of the guinea-pig taenia coli. J. Physiol., 200:621–635.PubMedGoogle Scholar
  9. Brading, A., Bülbring, E., and Tomita, T. 1969b. The effect of sodium and calcium on the action potential of the smooth muscle of the guinea-pig taenia coli. J. Physiol., 200:637–654.PubMedGoogle Scholar
  10. Bülbring, E. and Burnstock, G. 1960. Membrane potential changes associated with tachyphylaxis and potentiation of the response to stimulating drugs in smooth muscle. Br. J. Pharmacol., 15:611–624.Google Scholar
  11. Bülbring, E. and Tomita, T. 1969. Increase of membrane conductance by adrenaline in the smooth muscle of guinea-pig taenia coli. Proc. Roy. Soc. B, 172:89–102.CrossRefGoogle Scholar
  12. Bülbring, E., Burnstock, G., and Holman, M. E. 1958. Excitation and conduction in the smooth muscle of the isolated taenia coli of the guinea-pig. J. Physiol., 142:420–437.PubMedGoogle Scholar
  13. Burnstock, G. 1958a. The effects of acetylcholine on membrane potential, spike frequency, conduction velocity and excitability in the taenia coli of the guinea-pig. Physiol., 143: 165–182.Google Scholar
  14. Burnstock, G. 1958b. The action of adrenaline on excitability and membrane potential in the taenia coli of the guinea-pig and the effect of DNP on this action and on the action of acetylcholine. J. Physiol, 143:183–194.PubMedGoogle Scholar
  15. Burnstock, G. and Straub, R. W. 1958. A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J. Physiol., 140:156–167.PubMedGoogle Scholar
  16. Frey gang, W. H., Rapoport, S. I., and Peachey, L. D. 1967. Some relations between changes in the linear electrical properties of striated muscle fibers and changes in ultrastructure. J. Gen. Physiol., 50:2437–2458.CrossRefGoogle Scholar
  17. George, E. P. 1961. Resistance values in a syncytium. Austral. J. Exp. Biol., 39:267–214.PubMedCrossRefGoogle Scholar
  18. Goto, M., Kimoto, Y., and Kato, Y. 1971. A study on the excitation-K:ontraction coupling of the bullfrog ventricle with voltage clamp technique. Jap. J. Physiol., 21:159–173.CrossRefGoogle Scholar
  19. Harned, H. S. and Owen, B. B. 1958. The Physical Chemistry of Electrolytic Solutions. Reinhold, New York.Google Scholar
  20. Jirounek, P. and Straub, R. W. 1971. The potential distribution and the short-circuiting factor in the sucrose gap. Biophys. J., 11:1–10.PubMedCrossRefGoogle Scholar
  21. Julian, F. J., Moore, J. W., and Goldman, D. E. 1962a. Membrane potentials of the lobster giant axon obtained by use of the sucrose-gap technique. J. Gen. Physiol., 45:1195–1216.PubMedCrossRefGoogle Scholar
  22. Julian, F. J., Moore, J. W., and Goldman, D. E. 1962b. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J. Gen. Physiol., 45:1217–1238.PubMedCrossRefGoogle Scholar
  23. Katz, B. 1966. Nerve, Muscle, and Synapse. McGraw-Hill, New York.Google Scholar
  24. König, K. 1962. Membranpotentialmessungen and Skeletmuskel mit der “Saccharose-Trennwand”- Methode. Pflügers Arch., 275:452–460.CrossRefGoogle Scholar
  25. Kuriyama, H. and Tomita, T. 1970. The action potential in the smooth muscle of the guinea-pig taenia coli and ureter studied by the double-sucrose-gap method. J. Gen. Physiol.,55:147–162.PubMedCrossRefGoogle Scholar
  26. Lakshminarayanaiah, N. 1969. Transport Phenomena in Membranes. Academic Press, New York.Google Scholar
  27. Noble, D. 1966. Applications of Hodgkin-Huxley equations to excitable tissues. Physiol Rev., 46:1–50.PubMedGoogle Scholar
  28. Ritchie, J. M. and Straub, R. W. 1956. The effect of cooling on the size of the action potential of mammalian non-medullated fibres. J. Physiol, 134:712–717.PubMedGoogle Scholar
  29. Rougier, O., Vassort, G., and Stämpfli, R. 1968. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflügers Arch., 301:91–108.CrossRefGoogle Scholar
  30. Schmidt, H. 1962. Messung von Änderungen des Membranwiderstandes markhaltiger Nervenfasern mit der “Sacchrose-Trennwand”-Methode. Pflügers Arch., 274:632–641.CrossRefGoogle Scholar
  31. Shuba, M. F. 1961a. Electrotonus in smooth muscle. Biophysics, 6:64–71.Google Scholar
  32. Shuba, M. F. 1961b. The influence of adrenaline on the electrotonus of smooth muscle. Sechenov Physiol. J. USSR, 47:109–113.Google Scholar
  33. Shuba, M. F. 1965. Electrical properties of smooth muscle. Biophysics, 10:67–76.Google Scholar
  34. Stämpfli, R. 1954. A new method for measuring membrane potentials with external electrodes. Experientia, 10:508–509.PubMedCrossRefGoogle Scholar
  35. Stämpfli, R. 1963. Die doppelte Saccharosetrennwandmethode zur Messung von elektrischen Membraneigenschaften mit extracellulären Elektroden. Helv. Physiol. Acta, 21:189–204.Google Scholar
  36. Stämpfli, R. and Nishie, K. 1956. Effects of caicium-free solutions on membrane-potential of myelinated nerve fibers of the Brazilian frog Leptodactylus ocellatus. Helv. Physiol. Acta, 14:93–104.Google Scholar
  37. Tomita, T. 1966. Membrane capacity and resistance in mammalian smooth muscle. J. Theor. Biol., 12:216–227.PubMedCrossRefGoogle Scholar
  38. Tomita, T. 1967. Spike propagation in the smooth muscle of the guinea-pig taenia coli. J. Physiol., 191:517–527.PubMedGoogle Scholar
  39. Tomita, T. 1969. The longitudinal tissue impedance of the guinea-pig taenia coli. J. Physiol., 201:145–159.PubMedGoogle Scholar
  40. Tomita, T. 1970. Electrical properties of mammalian smooth muscle. In: Smooth Muscle, pp. 197–243. Ed. by Bülbring, E., Brading, A., Jones, A., and Tomita, T. Edward Arnold, London.Google Scholar
  41. Tomita, T. 1972. Conductance change during the inhibitory potential in the guinea-pig taenia coli. J. Physiol., 225:693–703.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. F. Coburn
    • 1
  • M. Ohba
    • 1
  • T. Tomita
    • 1
  1. 1.Department of Physiology Faculty of MedicineKyushu UniversityFukuokaJapan

Personalised recommendations