Advertisement

Maintenance of Constant Ion Concentration in Body Fluids: Calcium, Magnesium, Phosphate, and Sulfate

  • Samuel Natelson
  • Ethan A. Natelson

Abstract

Approximately 99% of the body calcium is located in the skeleton. Thus, along with phosphate, it forms the hard tissues of the body. As such, it acts as a huge reservoir for maintenance of plasma calcium levels.

Keywords

Sarcoplasmic Reticulum Parathyroid Gland Serum Calcium Level Magnesium Deficiency Inorganic Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading—Maintenance of Constant Ion Concentration in Body Fluids: Calcium, Magnesium, Phosphate, and Sulfate

  1. Malm, O. J., Calcium Requirement and Adaptation in Adult Males, Universitet, Boston, Massachusetts (1958).Google Scholar
  2. Van Watzer, J. R., Phosphorus and Its Compounds. Technology, Biological Functions and Applications, Vol. II, Wiley, New York (1961).Google Scholar
  3. Benesch, R., Ed., Sulfur in Proteins, Academic Press, New York (1959).Google Scholar
  4. Bolis, L., Keynes, R. D., and Wilbrandt, W., Roles of Membranes in Secretory Processes, North-Holland, Amsterdam (1972).Google Scholar
  5. Nakao, M. and Packer, L., Organization of Energy-Transducing Membranes, University Park Press, Baltimore, Maryland (1972).Google Scholar
  6. McLean, F. C., Calcium and phosphorus metabolism in man and animals with special reference to pregnancy and lactation, Ann. N.Y. Acad. Sci. 64:279–462 (1956).Google Scholar
  7. Comar, C. L. and Bronne, F., Mineral Metabolism, Vol. III, Calcium Physiology Academic Press, New York (1969).Google Scholar
  8. Jackson, W. P., Calcium Metabolism and Bone Disease, Williams and Wilkins, Baltimore,• Maryland (1967).Google Scholar
  9. Fourman, P. and Royer, P., Calcium, Metabolism and the Bone, 2nd Ed., Davis Co. (1968).Google Scholar

References

  1. 1.
    Eichelberger, L. and McLean, F. C., Distribution of calcium and magnesium between cells and extracellular fluids of skeletal muscle and liver in dogs, J. Biol. Chem. 142: 467–476 (1942).Google Scholar
  2. 2.
    Winegrad, S. and Shanes, A. M., Calcium flux and contractility in guinea pig atria, J. Gen. Physiol. 45: 371 (1962).Google Scholar
  3. 3.
    Grollman, A. P., Walker, W. G., Harrison, H. C., and Harrison, H. E., Site of reabsorption of citrate and calcium in the renal tubule of the dog, Am. J. Physiol. 205: 697–701 (1963).Google Scholar
  4. Maintenance of Constant Ion Concentration: Ca, Mg, PO4i SO4 185Google Scholar
  5. 4.
    Carafoli, E., Gamble, R. L., and Lehninger, A. L., Rebounds and oscillations in respiration linked movements of Ca + + and H+ in rat liver mitochondria, J. Biol. Chem. 241: 2644–2652 (1966).Google Scholar
  6. 5.
    Chance, B. and Johnson, M. L., Hydrogen ion concentration changes in mitochondrial membranes, J. Biol. Chem. 241: 4588–4599 (1966).Google Scholar
  7. 6.
    Dale, M. E. and Kellerman, G. M., The binding of calcium by the plasma proteins in hyperparathyroidism, Clin. Sci. 32: 433–442 (1967).Google Scholar
  8. 7.
    Yamada, S. and Tonomura, Y., Phosphorylation of the Ca2+-Mg2+ dependent ATPase of the sarcoplasmic reticulum coupled with cation translocations, J. Biochem. (Tokyo) 71: 1101–1104 (1972).Google Scholar
  9. 8.
    Weber, A., Herz, R., and Reiss, I., Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Z. 345: 329–369 (1966).Google Scholar
  10. 9.
    Ebashi, S. and Lipmann, F., Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle, J. Cell. Biol. 14: 389400 (1962).Google Scholar
  11. 10.
    Skou, J. C., The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23:394–401 (1957); The enzymatic basis for the active transport of sodium and potassium, Protoplasma 63: 303–308 (1967).Google Scholar
  12. 11.
    Meissner, G. and Fleischer, S., Characterization of sarcoplasmic reticulum from skeletal muscle, Biochim. Biophys. Acta 241: 356–378 (1971).Google Scholar
  13. 12.
    Eletr, S. and Inesi, G., Phospholipid orientation in sarcoplasmic membranes: Spin-label ESR and proton NMR studies, Biochim. Biophys. Acta 282: 174–179 (1972).Google Scholar
  14. 13.
    Martonosi, A. and Halpin, R. A., Sarcoplasmic reticulum. X. The protein composition of sarcoplasmic reticulum membranes, Arch. Biochem. Biophys. 144: 66–77 (1971).Google Scholar
  15. 14.
    Yu, B. P. and Masoro, E. J., Isolation and characterization of the major protein component of sarcotubular membranes, Biochemistry 9: 2909–2917 (1970).Google Scholar
  16. 15.
    Yamada, S. and Tonomura, Y., Reaction mechanism of the Cat+ dependent ATPase of sarcoplasmic reticulum from skeletal muscle, J. Biochem. (Tokyo) 72: 417–425 (1972).Google Scholar
  17. 16.
    Nakamura, H., Hori, H., and Mitsui, T., Conformational change in sarcoplasmic reticulum induced by ATP in the presence of magnesium ion and calcium ion, J. Biochem. (Tokyo) 72: 635–646 (1972).Google Scholar
  18. 16a.
    de Meis, L. and de Mello, M. C. F., Substrate regulation of membrane phosphorylation and Ca+2 transport in the sarcoplasmic reticulum, J. Biol. Chem. 248: 3691–3701 (1973).Google Scholar
  19. 17.
    Kanazawa, T., Yamada, S., Yamamoto, T., and Tonomura, Y., Reaction mechanism of the Ca+ + dependent ATPase of sarcoplasmic reticulum. V. Vectoral requirements for Ca and Mg, J. Biochem. (Tokyo) 70: 95–123 (1971).Google Scholar
  20. 17a.
    Natelson, S., Richelson, M. R., Sheid, B., and Bender, S. L., X-ray spectroscopy in the clinical laboratory. I. Calcium and potassium, Clin. Chem. 5: 519–531 (1959).Google Scholar
  21. 18.
    Carruthers, B. M., Copp, D. H., and McIntosh, H. W., Diurnal variation in urinary excretion of calcium and phosphate and its relation to blood levels, J. Lab. Clin. Med. 63: 959–968 (1964).Google Scholar
  22. 19.
    Subryan, V. L., Popovtzer, M. M., Parks, S. D., and Reeve, E. B., Measurement of serum ionized calcium with the ion-exchange electrodes, Clin. Chem. 18: 1459–1462 (1972).Google Scholar
  23. 20.
    Gley, E., Note on the function of the thyroid gland in the rabbit and dog, Compt. Rend. Soc. Biol. 43: 843 (1891).Google Scholar
  24. 21.
    MacCallum, W. G. and Voegtlin, C., On the relation of the parathyroid to calcium metabolism and the nature of tetany, Bull. Johns Hopkins Hosp. 19:91–92 (1908); ibid: J. Exp. Med. 11: 118 (1909).Google Scholar
  25. 22.
    Collip, J. B., The extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium, J. Biol. Chem. 63: 395–438 (1925).Google Scholar
  26. 23.
    Aurbach, G. D., Isolation of parathyroid hormone after extraction with phenol, J. Biol. Chem. 234: 3179–3181 (1959).Google Scholar
  27. 24.
    Rasmussen, H. and Craig, L., Purification of parathyroid hormone by use of countercurrent distribution, J. Am. Chem. Soc. 81: 5003 (1959).Google Scholar
  28. 25.
    Berson, S. A. and Yalow, R. S., Parathyroid hormone in plasma in adenomatous hyperparathyroidism, uremia, and bronchogenic carcinoma, Science 154: 907–909 (1966).Google Scholar
  29. 26.
    Arnaud, C. D., Taso, H. S., and Littledike, T., Radioimmunoassay of human parathyroid hormone in serum, J. Clin. Invest. 50: 21–34 (1971).Google Scholar
  30. 27.
    Bélanger, L. F. and Robichon, J., Parathormone induced osteolysis in dogs, J. Bone Joint Surg. 46A: 1008–1012 (1964).Google Scholar
  31. 28.
    Doty, S. B. and Talmage, R. V., Stimulation of parathyroid secretion in the absence of the adrenal, thyroid, or pituitary gland, Gen. Comp. Endocrinol. 4: 545–549 (1964).Google Scholar
  32. 29.
    Walker, D. G., Lapiere, C. M., and Gross, J. A., A collagenolytic factor in rat bone promoted by parathyroid extract, Biochem. Biophys. Res. Commun. 15: 397–402 (1964).Google Scholar
  33. 30.
    Chase, L. R. and Aurbach, G. D., The effect of parathyroid hormone on the concentration of adenosine 3’,5’-monophosphate in skeletal tissue in vitro, J. Biol. Chem. 245: 1520–1526 (1970).Google Scholar
  34. 31.
    Melson, G. L., Chase, L. R., and Aurbach, G. D., Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules, Endocrinology 86: 511–518 (1970).Google Scholar
  35. 32.
    Klein, D. C. and Raisz, L. G., Role of adenosine-3’,5’-monophosphate in the hormonal regulation of bone resorption: studies in the cultured fetal bone, Endocrinology 89: 818–826 (1971).Google Scholar
  36. 33.
    Copp, D. H. and Davidson, A. G. F., Direct humoral control of parathyroid function in the dog, Proc. Soc. Exp. Biol. Med. 107: 342–344 (1961).Google Scholar
  37. 34.
    Egawa, J. and Neumann, W. F., Effects of parathyroid hormone on phosphate turnover in bone and kidney, Endocrinology 72:370–376 (1963); Effect of parathyroid extract on the metabolism of radioactive phosphate in kidney, 74: 90–101 (1964).Google Scholar
  38. 35.
    Chase, L. R. and Aurbach, G. D., Parathyroid function and the renal excretion of 3’,5’ adenylic acid, Proc. Nat. Acad. Sci. U.S. 58: 518–525 (1967).Google Scholar
  39. 36.
    Chase, L. R. and Aurbach, G. D., Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin, Science 159: 545–548 (1968).Google Scholar
  40. 37.
    Copp, D. H., Calcitonin-a new hormone from the parathyroid which lowers blood calcium, Oral Surg. Oral Med. Oral Pathol. 16: 872–877 (1962).Google Scholar
  41. 38.
    Hirsch, P. F., Thyrocalcitonin inhibition of bone resorption induced by parathyroid extract in thyroparathyroidectomized rats, Endocrinology 80: 539–541 (1967).Google Scholar
  42. 39.
    Pearse, A. G. E. and Carvalheira, A. F., Cytochemical evidence for an ultimobronchial origin of rodent thyroid C. cells, Nature 214: 929–931 (1967).Google Scholar
  43. 40.
    Matsuzawa, T. and Kurosumi, K., Morphological changes in the para-follicular cells of the rat thyroid glands after administration of calcium shown by electron microscopy, Nature 213: 927–928 (1967).Google Scholar
  44. 41.
    Foster, G. V., Doyle, F. H., Bordier, P., Matrajt, H., and Tun-Chot, S., Roentgenologic and histologic changes in bone produced by thyrocalcitonin, Am. J. Med. 43: 691–695 (1967).Google Scholar
  45. 42.
    Murad, F., Brewer, H. B., Jr., and Vaughan, M., Effect of thyrocalcitonin on adenosine 3’,5’ cyclic phosphate formation by rat kidney and bone, Proc. Nat. Acad. Sci. U.S. 65: 446–453 (1970).Google Scholar
  46. 43.
    Sobel, A. E., Kramer, B., et al., Composition of bones and teeth in relationship to the composition of blood and diet, J. Biol. Chem. 158: 475–489 (1945); 159:159–171 (1945); 176:1103–1121 (1948); 179: 205–210 (1949).Google Scholar
  47. 44.
    Harris, F., Hoffenberg, R., and Black, E., Calcium kinetics in vitamin D deficiency rickets. S. Afr. Med. J. 38: 938 (1964).Google Scholar
  48. 45.
    Schachter, E., Finkelstein, J. D., and Kowarski, S., Metabolism of vitamin D;I. Preparation of radioactive vitamin D and its intestinal absorption in the rat, J. Clin. Invest. 43: 787–796 (1964).Google Scholar
  49. 46.
    Gran, F. C., The retention of parenterally injected calcium in rachitic dogs, Acta Physiol. Scand. 50: 132–139 (1960).Google Scholar
  50. 47.
    Chen, P. S., Jr. and Lane, K., Serum protein binding of Vitamin D3. Arch. Biochem. Biophys. 112: 70–75 (1965).Google Scholar
  51. 48.
    Morii, H., Lund, J., Neville, P. F., and DeLuca, H. F., Biological activity of a vitamin D metabolite, Arch. Biochem. Biophys. 120: 508–512 (1967).Google Scholar
  52. 49.
    Blunt, J. W., DeLuca, H. F., and Schnoes, H. K., 25 hydroxy cholecalciferol, A biologically active metabolite of vitamin D3, Biochemistry 7: 3317–3322 (1968).Google Scholar
  53. 50.
    Corradino, R. A. and Wasserman, R. H., Actinomycin D inhibition of Vitamin D3-induced calcium binding protein (CaBP) formation in chick duodenal mucosa, Arch. Biochem. Biophys. 126: 957–960 (1968).Google Scholar
  54. 51.
    Garabedian, M., Holick, M. F., Deluca, H. F., and Boyle, I. T., Control of 25 hydroxycholecalciferol metabolism by parathyroid glands, Proc. Nat. Acad. Sci: U.S. 69: 1673–1676 (1972).Google Scholar
  55. 52.
    Morrissey, R. L. and Rath, Damon F., Purification of human renal calcium binding protein from necropsy specimens, Proc. Soc. Exp. Biol. Med. 145: 699703 (1974).Google Scholar
  56. 52a.
    MacLennan, D. H., Isolation of a second form of calsequestrin, J. Biol. Chem. 249: 980–984 (1974).Google Scholar
  57. 53.
    Tanaka, Y. and Deluca, H. F., Bone mineral mobilization activity of 1,25 dihydroxycalciferol, a metabolite of Vitamin D, Arch Biochem. Biophys. 146: 574–578 (1971).Google Scholar
  58. 53a.
    DeLuca, F., Vitamin D: The vitamin and the hormone, Fed. Proc. 33: 22112219 (1974).Google Scholar
  59. 54.
    Pincus, J. B., Natelson, S., and Lugovoy, J. K., Effect of epinephrine, ACTH and cortisone on citrate, calcium glucose and phosphate levels in rabbits, Proc. Soc. Exp. Biol. Med. 78: 24–27 (1951).Google Scholar
  60. 55.
    Natelson, S., Rannazzisi, G., and Pincus, J. B., Dynamic control of calcium, phosphate, citrate, and glucose levels in blood serum, Clin. Chem. 9: 31–62 (1963).Google Scholar
  61. 56.
    Singer, F. R., Woodhouse, N. J. Y., Parkinson, D. K., and Joplin, G. F., Some acute effects of administered porcine calcitonin in Man, Clin. Sci. 37: 181–190 (1969).Google Scholar
  62. 57.
    Pincus, J. H., Feldman, R. G., Rannazzisi, G., and Natelson, S., Electromyographic studies with pituitary extracts which lower serum calcium and raise serum citrate levels, Endocrinology 76: 783–786 (1965).Google Scholar
  63. 58.
    Wexler, J. B., Pincus, J. B., Natelson, S., and Lugovoy, J. K., Fate of citrate in erythroblastotic infants treated with exchange transfusion, J. Clin. Invest. 28: 478, 481 (1959).Google Scholar
  64. 59.
    Pincus, J. B., Natelson, S., and Lugovoy, J. K., Response of citric acid levels of normal adults and children to intramuscular injection of epinephrine, J. Clin. Invest. 28: 741–745 (1949).Google Scholar
  65. 60.
    Natelson, S., Pincus, J. B., and Lugovoy, J. K., Response of citric acid levels to oral administration of glucose. I. Normal adults and children, II. Abnormalities observed in the diabetic and convulsive state, J. Clin. Invest. 27: 446453 (1948).Google Scholar
  66. 61.
    Gottfried, S. P., Natelson, S., and Pincus, J. B., Response of serum citric acid levels in schizophrenics to the intramuscular administration of insulin, J. Nerv. Mental Dis. 117: 59–64 (1953).Google Scholar
  67. 62.
    Natelson, S., Pincus, J. B., and Rannazzisi, G., A rabbit serum calcium lowering factor from the pituitary, Clin. Chem. 9: 631–636 (1963).Google Scholar
  68. 63.
    Natelson, S., Rannazzisi, G., and Pincus, J. B., Effect of ACTH and Vasopressin on serum calcium and citrate levels in the rabbit, Endocrinology 77: 108–113 (1965).Google Scholar
  69. 64.
    Natelson, S., Walker, A. A., and Pincus, J. B., Chlordiazepoxide and diphenyl hydantoin as antagonists to ACTH effect on serum calcium and citrate levels, Proc. Soc. Exp. Biol. Med. 22: 689–692 (1966).Google Scholar
  70. 65.
    Vaughan, O. W. and Filer, L. J., Jr., The enhancing action of certain carbohydrates on the intestinal absorption of calcium in the rat, J. Nutr. 71: 10–14 (1960).Google Scholar
  71. 66.
    Charley, P. and Saltman, P., Chelation of calcium by lactose. Its role in transport mechanisms, Science 139: 1205–1206 (1963).Google Scholar
  72. 67.
    Natelson, S., Klein, M., and Kramer, B., The effect of oral administration of calcium fructose diphosphate on serum organic phosphate, inorganic phos- phate, calcium, protein and citric acid levels, J. Clin. Invest. 30: 50–54 (1951).Google Scholar
  73. 68.
    Wasserman, R. H., Comar, C. L., Schooley, J. C., and Lengemann, F. W., Interrelated effects of L-lysine and other dietary factors on the gastrointestinal absorption of calcium 45 in the rat and chick, J. Nuts. 62: 367–375 (1957).Google Scholar
  74. 68a.
    Parra-Covarrubias, A., Hypocalcemia during the infusion of arginine to a group of obese adolescents, A.ch. Inv. Med. (Mex.) 2: 107–114 (1971).Google Scholar
  75. 69.
    Albright, F. A. and Reifenstein, E. C., The Parathyroid Gland and Metabolic Bone Disease, Williams and Wilkins, Baltimore, Maryland (1948).Google Scholar
  76. 70.
    Demetrious, J. A. and Beattie, J. M., Electrophoretic separation on agarose thin film of isoenzymes of alkaline phosphatase from human serum and tissue, Clin. Chem. 17: 290–295 (1971).Google Scholar
  77. 71.
    Albright, F., Note on the management of hypoparathyroidism with dihydrotachysterol, J. Am. Med. Assoc. 112: 2592–2593 (1939).Google Scholar
  78. 72.
    Barney, J. D. and Sulkowitch, H. W., Progress in the management of urinary calculi, J. Urol. 37: 746–762 (1937).Google Scholar
  79. 73.
    Nordin, B. E. C., Primary and secondary hyperparathyroidism, Adv. Intern. Med. 9: 81–105 (1958).Google Scholar
  80. 74.
    Gordan, G. S., Cantino, T. J., Erhardt, L., Hansen, J., and Lubich, W., Osteolytic sterol in human breast cancer, Science 51: 1226–1229 (1966).Google Scholar
  81. 75.
    McGreal, D. A., Idiopathic hypercalcemia syndromes of infancy, Lancet 2: 101–110 (1954).Google Scholar
  82. 76.
    Eisenberg, E. and Pimstone, B., Hypophosphatasia in an adult. A case report, Clin. Orthop. 52: 199–212 (1967).Google Scholar
  83. 77.
    Whedon, G. D., Osteoporosis, atrophy of disuse, in Bone as a Tissue, Rodahl, K., Nicholson, J. T., and Brown, E. M., Eds., McGraw-Hill, New York (1960), pp. 67–82.Google Scholar
  84. 78.
    Bronsky, D., Kushner, D. S., Dubin, A., and Snapper, I., Idiopathic hypoparathyroidism and pseudohypoparathyroidism: Case reports and review of the literature, Medicine 37: 317–352 (1958).Google Scholar
  85. 79.
    Lee, J. B., Tashjian, A. H., Jr, Streeto, J. M., and Frantz, A. G., Familial pseudohypoparathyroidism. Role of parathyroid hormone and thyrocalcitonin, New Eng. J. Med. 279: 1. 179–1184 (1968).Google Scholar
  86. 79a.
    Balsan, S. and Garabedian, H., 25-Hydroxycalciferol, a comparative study in deficiency rickets and different types of resistant rickets, J. Clin. Invest. 51: 749–759 (1972).Google Scholar
  87. 79b.
    Harrison, H. E. and Harrison, H. C., Dihydrotachysterol, a calcium active steroid not dependent upon kidney metabolism, J. Clin. Invest. 1919–1922 (1972).Google Scholar
  88. 80.
    Campbell, P. G. and Moosa, G. M., Hypomagnesemia and magnesium therapy in protein caloric malnutrition, J. Pediat. 77: 709–714 (1970).Google Scholar
  89. 81.
    Wilhelm, G., Vitamin D deficiency rickets (a review), Z. Kinderheilk. 117: 653–659 (1969).Google Scholar
  90. 82.
    Pincus, J. B., Gittleman, I. F., Sobel, A. E., and Schmerzler, E., Effects of Vitamin D on the serum calcium and phosphorus levels in infants during the first week of life, Pediatrics 13: 178–184 (1954).Google Scholar
  91. 82a.
    Tsang, R. C., Light, I. J., Sutherland, J. M., and Kleinman, L. I., Possible pathogenic factors in neonatal hypocalcemia of prematurity, J. Pediat. 82: 423–429 (1973).Google Scholar
  92. 83.
    Rogers, M. C. and Bergstrom, W. H., Diet induced hypoparathyroidism. A model for neonatal tetany, Pediatrics (Suppl.) 47: 207–210 (1971).Google Scholar
  93. 84.
    Coenegracht, J. M. and Houben, H. G. J., Idiopathic hypomagnesemia with hypocalcemia in an adult, Clin. Chim. Acta 50: 349–357 (1973).Google Scholar
  94. 85.
    Levy, H. M. and Ryan, E. M., Evidence that the contraction of actomyosin requires the reaction of adenosine triphosphate and magnesium at two different sites, Biochem. Z. 345: 132–147 (1966).Google Scholar
  95. 86.
    Michlrad, A., Kovacs, M., and Hegyi, G., The role of Mg++ in the contraction and adenosine triphosphatase activity of myofibrils, Biochem. Biophys. Acta 107: 567–578 (1965).Google Scholar
  96. 87.
    Herzberg, L. and Bold, A. W., A sex difference in mean magnesium levels in depression, Clin. Chem. Acta 39: 229–231 (1972).Google Scholar
  97. 88.
    Raut, S. J. and Viswanathan, R., Distribution of magnesium in body fluids, Indian J. Med. Res. 60: 1272–1277 (1972).Google Scholar
  98. 89.
    Vallee, B. L., Wacker, W. E. C., and Ulmer, D. D., The magnesium deficiency tetany syndrome in man, New Eng. J. Med. 262: 155–161 (1960).Google Scholar
  99. 90.
    Smith, W. O., Hammarsten, J. F., and Eliel, L. P., The clinical expression of magnesium deficiency, J. Am. Med. Assoc. 174: 77–78 (1960).Google Scholar
  100. 91.
    Battifora, H., Eisenstein, R., Laing, G. H., and McCreary, P., The kidney in experimental magnesium deprivation. A morphologic and biochemical study, Am. J. Pathol. 48: 421–428 (1966).Google Scholar
  101. 92.
    Robinson, R. R., Murdaugh, H. V., Jr., and Peschel, E., Renal factors responsible for the hypermagnesemia of renal disease, J. Lab. Clin. Med. 53: 572–576 (1959).Google Scholar
  102. 93.
    Prasad, A. S., Flink, E. B., and Zinneman, H. H., The base binding property of the serum proteins with respect to magnesium, J. Lab. Clin. Med. 54: 357364 (1959).Google Scholar
  103. 94.
    Frizel, D. E., Malleson, A. G., and Marks, V., Measurement of plasma ionized calcium and magnesium by ion exchange strip, Clin. Chim. Acta 16: 45–66 (1967).Google Scholar
  104. 95.
    Schilli, W., Ochs, G., and Eschler, J., The influence of Mg ions on the viscosity of the human saliva and activation of mucolytic enzymes, Z. Laryng. Rhinol. 45: 110–112 (1966).Google Scholar
  105. 96.
    Stachura, J., Morphological investigations of magnesium deprivation and magnesium load in the rat, Patol. Pol. 22: 41–53 (1971).Google Scholar
  106. 97.
    Rojo Ortega, J. M., Brecht, H. M., and Genest, J., Effects of magnesium deficient diet on the thyroid C cells and parathyroid gland of the dog, Virchow’s Arch. Ab T. B. Zell. Pathol. 7: 81–89 (1971).Google Scholar
  107. 98.
    Stokstad, E. R. and Britton, W. M., Aorta and other soft tissue calcification in the magnesium-deficient rat, J. Nutr. 100: 1501–1505 (1970).Google Scholar
  108. 99.
    Bunce, G. E., Price, N. O., and Hall, B. L., Reduction in kidney calcification of magnesium deficiency by administration of chlorpromazine, chlorquine, or acetyl salicylic acid, Nutr. Rep. Int. 2: 145–152 (1970).Google Scholar
  109. 100.
    Heeschen, W. H., Reichmuth, J., and Tolle, A., Magnesium content of cow’s milk, Wien Tierärtzl. Z. 60: 55–59 (1973).Google Scholar
  110. 101.
    Salet, J. and Fournet, J. P., Magnesium deficiency in children past the neonatal period, Sem. Hop. Paris 47: 39–45 (1971).Google Scholar
  111. 102.
    Kyung, S. C., Studies of serum magnesium levels in healthy children and in various disease states, Korea Univ. Med. J. 9: 325–333 (1972).Google Scholar
  112. 103.
    Gittleman, I. F., Pincus, J. B., Kramer, B., Sobel, A. E., and Schmerzler, E., Citric acid metabolism in infants during the neonatal period, Pediatrics 15: 124–134 (1955).Google Scholar
  113. 104.
    Lim, P and Jacob, E., Magnesium status of alcoholic patients, Metabolism 21:1045–1051 (1972); Magnesium deficiency in liver cirrhosis, Q. J. Med. 41: 291–300 (1972).Google Scholar
  114. 105.
    Cronberg, S. and Caen, J. P., Mg + + and Ca + + induced platelet aggregation and ADP, Thromb. Diath. Haemorrh. 24: 432–437 (1970).Google Scholar
  115. 106.
    Helve, O., Blood phosphorus distribution in certain internal diseases, Acta Med. Scand. 125: 505–522 (1946).Google Scholar
  116. 107.
    Kerr, S. E. and Daoud, L., A study of the organic acid-soluble phosphorus of the erythrocytes of various vertebrates, J. Biol. Chem. 109: 301–315 (1935).Google Scholar
  117. 108.
    Wooton, I. D. P. and King, E. J., Normal values for blood constituents. Inter-hospital differences, Lancet 1: 470–471 (1953).Google Scholar
  118. 109.
    Spivek, M. L., Microchemical blood standards for normal five-day old newborn infants, J. Pediat. 48: 581–587 (1956).Google Scholar
  119. 110.
    Till, U., Brox, D., and Frunder, H., Orthophosphate turnover in the extra-cellular and intracellular space of mouse liver, Eur. J. Biochem. 11: 541–548 (1969).Google Scholar
  120. 111.
    Green, D. E. and Brucker, R. F., The molecular principles of biological membrane construction and function, Biol. Sci. 22: 13–19 (1972).Google Scholar
  121. 112.
    Brierley, G., Murer, E., Bachmann, E., and Green, D. E., Studies on ion transport. II. Accumulation of inorganic phosphate and magnesium by heart mitochondria, J. Biol. Chem. 238: 3482–3489 (1963).Google Scholar
  122. 113.
    Hatase, O., Wakabayashi, T., and Green, D. E., On the correlation of configurational changes in the inner mitochondrial membrane with energization, J. Bioenergetics 2: 183–195 (1971).Google Scholar
  123. 114.
    Cori, C. F., Cori, G. T., and Green, A. A., Crystalline muscle phosphorylase III. Kinetics, J. Biol. Chem. 141: 39–55 (1943).Google Scholar
  124. 115.
    Murad, F., Strauch, B. S., and Vaughan, M., The effect of gonadotropins on testicular adenyl cyclase, Biochim. Biophys. Acta 177: 591–598 (1969).Google Scholar
  125. 116.
    Reiss, E., Canterbury, J. M., Sercovitz, M. A., and Kaplan, E. L., The role of phosphate secretion of parathyroid hormone in man, J. Clin. Invest. 49: 2146–2149 (1970).Google Scholar
  126. 117.
    Webster, G. D., Mann, J. B., and Hills, A. G., The effect of phosphate infusions upon renal phosphate clearance in man: Evidence for tubular phosphate secretion, Metabolism 16: 797–814 (1967).Google Scholar
  127. 118.
    Yamahiro, H. S. and Reynolds, T. B., Phosphate excretion in normal and hyperparathyroid subjects with controlled phosphate intake, Metabolism 11: 213–225 (1962).Google Scholar
  128. 119.
    Smith, D. A. and Nordin, B. S. C., The effect of high phosphorus intake on total and ultrafiltrated plasma calcium and on phosphate clearance, Clin. Sci. 26: 479–481 (1964).Google Scholar
  129. 120.
    Agus, Z. S., Puschett, J. B., Senesky, D., and Goldberg, M., Mode of action of parathyroid hormone and cyclic adenosine 3’,5’-monophosphate on renal tubular phosphate reabsorption in the dog, J. Clin. Invest. 50: 617–626 (1970).Google Scholar
  130. 121.
    Kramer, B., Shear, M. J., and Siegel, J., Mechanism of healing in low phosphorus rickets, J. Biol. Chem. 91: 271–290 (1930).Google Scholar
  131. 122.
    Baretrop, D. and Oppe, T. E., Dietary factors in neonatal calcium homeostasis, Lancet 2: 1333–1335 (1970).Google Scholar
  132. 123.
    Vincke, H., Hereditary hypophosphatasia, Acta Paediat. Belg. 24: 131–138 (1970).Google Scholar
  133. 124.
    Guibaud, P. and Larbre, F., A case of benign form of hypophosphatasia treated with phosphate, Pediatrics 25: 319–330 (1970).Google Scholar
  134. 125.
    Lievre, J. A., Chigot, P. L., and Camus, J. P., Primary hyperparathyroidism symptomatology in a series of 100 cases, Ann. Med. Interne. (Paris) 124: 1–8 (1973).Google Scholar
  135. 125a.
    Morris, R. C., Jr., Renal tubular acidosis mechanisms: Classification and implications, New Eng. J. Med. 281: 1405–1413 (1969).Google Scholar
  136. 125b.
    Nash, M. A., Torrado, A. D., Greffer, I., Spitzer, A., and Edelmann, C. M., Jr., Renal tubular acidosis in infants and children. Clinical course, response to treatment and prognosis. J. Pediat. 80: 738–748 (1972).Google Scholar
  137. 126.
    Irvin, G. L., 3rd, Cohen, M. S., Moehris, R., and Mintz, D. H., Primary hyperparathyroidism. Current diagnosis, treatment and results, Arch. Surg. 105: 738–740 (1972).Google Scholar
  138. 127.
    Stamp, T. C. B. and Stacey, T. E., Evaluation of theoretical renal phosphorus threshold as an index of renal phosphorus handling, Clin. Sci. 39: 505–516 (1970).Google Scholar
  139. 128.
    Brown, R. G., Changes in aortic extensibility found in sulfate-deprived rats, J. Nutr. 92: 399 402 (1967).Google Scholar
  140. 129.
    Herbai, G., Effect of age, sex, starvation, hypophysectomy and growth hormone from several species on the inorganic sulphate pool and on the incorporation in vivo of sulphate into mouse costal cartilage. An attempt to study sulphation factor activity in vivo, Acta Endocrinol. 66: 333–351 (1971).Google Scholar
  141. 130.
    Pulkkinen, M. O., Sulphate conjugation during development, in human, rat and guinea pig, Acta Physiol. Scand. 66: 115–119 (1966).Google Scholar
  142. 131.
    Skipski, V. P., Smolowe, A. F., and Barclay, M., Separation of neutral glycosphingolipids and sulfatides by thin-layer chromatography, J. Lipid Res. 8: 295–299 (1967).Google Scholar
  143. 132.
    Miraglia, R. J. and Martin, W. G., The synthesis of taurine from sulfate. II. Chick liver phosphoadenosinephosphosulfate transferase, Proc. Soc. Exp. Biol. Med. 132: 640–644 (1969).Google Scholar
  144. 133.
    Brown, F. C. and Gordon, P. H., Cystathionine synthase from rat liver: partial purification and properties, Can. J. Biochem. 49: 484–491 (1971).Google Scholar
  145. 134.
    Patel, V., Tappel, A. L., and O’Brien, J. S., Hyaluronidase and sulfatase deficiency in Hurler’s syndrome, Biochem. Med. 3: 447–457 (1970).Google Scholar
  146. Maintenance of Constant Ion Concentration: Ca, Mg, FO4i SO4 193Google Scholar
  147. 135.
    Miller, E., Hlad, C. J., Jr., Levine, S., Holmes, J. H., and Elrick, H., Use of radioisotopes to measure body fluid constituents. I. Plasma sulfates, J. Lab. Clin. Med. 58: 656–661 (1961).Google Scholar
  148. 136.
    Kleeman, C. R., Taborsky, E., and Epstein, F. N., Improved method for determination of inorganic sulfate in biologic fluids, Proc. Soc. Exp. Biol. Med. 91: 480–488 (1956).Google Scholar
  149. 137.
    Cuthbertson, D. F. and Tompsett, S. L., Inorganic sulfate content of the blood and its determination, Biochem. J. 25: 1237–1243 (1931).Google Scholar
  150. 138.
    Reed, L. and Denis, W., The distribution of the nonprotein sulfur of the blood between serum and corpuscles, J. Biol. Chem. 73: 623–626 (1927).Google Scholar
  151. 139.
    Schmidt, E. G., McElvain, N. F., and Bowen, J. J., Plasma amino acids and ether soluble phenols in uremia, Am. J. Clin. Pathol. 20: 153–261 (1960).Google Scholar
  152. 140.
    Natelson, S. and Sheid, B., X-ray spectroscopy in the clinical laboratory.Google Scholar
  153. II. Chlorine and sulfur. Automatic analysis of microsamples, Clin. Chem. 6: 292–313 (1960).Google Scholar
  154. 141.
    Natelson, S. and Sheid, B., X-ray spectroscopy in the clinical laboratory.Google Scholar
  155. III. Sulfur distribution in the electrophoretic protein fractions of human serum: Abnormalities observed in certain disease states, Clin. Chem. 6: 314–326 (1960).Google Scholar
  156. 142.
    Natelson, S. and Stellate, R., Sulfur content of paper electrophoretic fractions in human serum, Clin. Chem. 13: 626–649 (1967).Google Scholar
  157. 143.
    Papadopoulou, D. B., Urinary sulfur partition in normal men and in cancer patients, Clin. Chem. 3: 257–262 (1957).Google Scholar
  158. 144.
    Ittyerah, T. R., Urinary excretion of sulfate in kwashiorkor, Clin. Chim. Acta 25: 365–369 (1969).Google Scholar
  159. 145.
    Haux, P. and Natelson, S., A method for the determination of cystine in urine, Clin. Chem. 16: 366–369 (1970).Google Scholar
  160. 146.
    Frimpter, G. W., Horwith, M., Furth, E., Fellows, R. E., and Thompson, D. D., Insulin and endogenous amino acid renal clearances in cystinuria. Evidence for tubular secretion, J. Clin. Invest. 41: 281–288 (1962).Google Scholar
  161. 147.
    Haux, P. and Natelson, S., Identification of renal calculi on micro samples by infra red analysis, Microchem. J. 15: 126–137 (1970).Google Scholar
  162. 148.
    Berzofsky, J. A., Peisach, J., and Horecker, B. I., Sulfheme proteins. IV. The stoichiometry of sulfur incorporation and the isolation of sulfhemin, the prosthetic group of sulfmyoglobulin, J. Biol. Chem. 247: 3783–3791 (1972).Google Scholar
  163. 149.
    Cohen, H. J. and Fridovich, I., Hepatic sulfite oxidase. The nature and function of the heure prosthetic groups, J. Biol. Chem. 246: 367–373 (1971).Google Scholar
  164. 150.
    Hall, M. O. and Straatsma, B. R., The synthesis of 3’-phosphoadenosine 5’-phosphosulfate by retinae and livers of normal and vitamin A-deficient rats, Biochim. Biophys. Acta 124: 246–253 (1966).Google Scholar
  165. 151.
    Koizumi, T., Suematsu, T., Kawasaki, A., Hirdmatsu, K., and Iwabori, N., Synthesis and degradation of active sulfate in liver, Biochim. Biophys. Acta 184: 106–113 (1969).Google Scholar
  166. 152.
    Bostrom, H., Friberg, U., Larsson, K. S., and Nilsonne, U., In vitro incorporation of S5-sulfate in chondrosarcomatous tissue, Acta Orthop. Scand. 39:58–72 (1968).Google Scholar
  167. 153.
    Sass, N. L. and Martin, W. G., The synthesis of taurine from sulfate. III. Further evidence for the enzymatic pathway in chick liver, Proc. Soc. Exp. Biol. Med. 139: 755–761 (1972).Google Scholar
  168. 154.
    Pleasure, D. E. and Prockop, D. J., Myelin synthesis in peripheral nerve in vitro: Sulphatide incorporation requires a transport lipoprotein, J. Neurochem. 19: 283–295 (1972).Google Scholar
  169. 155.
    Herschkowitz, N., McKhann, G. M., Saxena, S., Shooter, E. M., and Herndon, R., Synthesis of sulphatide containing lipoproteins in rat brain, J. Neurochem. 16: 1049–1057 (1969).Google Scholar
  170. 156.
    Dreyfus, J., Characterization of a sulfate and thiosulfate transporting system in salmonella typhinurium, J. Biol. Chem. 239: 2292–2294 (1964).Google Scholar
  171. 157.
    Singh, S. P. and McKenzie, J. M., 35S sulfate uptake by mouse harderian gland: Effect of serum from patients with Graves’ disease, Metabolism 20: 422427 (1971).Google Scholar
  172. 158.
    Robinson, J. W. L., Species differences in the intestinal response to sulphate ions, FEBS Letters (Amst.) 5: 157–160 (1969).Google Scholar
  173. 159.
    Berry, R. K., Hansard, S. K., Ismail, R. J., and Wysocki, A. A., Absorption deposition and placental transfer of sulfate sulfur by gilts, J. Nutr. 96: 399–408 (1969).Google Scholar
  174. 160.
    Hall, K. and Uthne, K., Some biological properties of purified sulfation factor (SF) from human plasma, Acta Med. Scand. 190: 137–143 (1971).Google Scholar
  175. 161.
    Van Den Brande, J. L., Van Wyk, J. J., Weaver, R. P., and Mayberry, H. E., Partial characterization of sulphation and thymidine factors in acromegalic plasma, Acta Endocrinol. (Kbh.) 66: 65–81 (1971).Google Scholar
  176. 162.
    Jerfy, A. and Roy, A. B., The sulphatase of ox liver. XII. The effect of tyrosine and histidine reagents on the activity of sulphatase A, Biochim. Biophys. Acta 175: 355–364 (1969).Google Scholar
  177. 163.
    Bowen, D. M. and Radin, N. S., Hydrolase activities in brain of neurological mutants: cerebroside galactosidase, nitrophenyl galactoside hydrolase, nitro-phenyl glucoside hydrolase and sulphatase, J. Neurochem. 16: 457–460 (1969).Google Scholar
  178. 164.
    Notation, A. D. and Ungar, F., Rat testis steroid sulfatase. II. Kinetic study, Steroids 14: 151–159 (1969).Google Scholar
  179. 165.
    Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., et al., Effect of dietary molybdenum and sulfate upon urinary excretion of copper in sheep, J. Nutr. 100: 1399–1406 (1970).Google Scholar
  180. 166.
    Cohen, H. J., Fridovich, I., and Rajagopalan, K. V., Hepatic sulfite oxidase. A functional role for molybdenum, J. Biol. Chem. 246: 374–382 (1971).Google Scholar
  181. 167.
    Hallick, R. B. and DeLuca, H. F., Metabolites of dihydrotachysterol in target tissues, J. Biol. Chem. 247: 91–97 (1972).Google Scholar
  182. 168.
    Schimpff, R. M., Quantitative determination of somatomedin in human serum (35S uptake by embryonic chick cartilage), Biomedicine 19: 142–147 (1973).Google Scholar
  183. 169.
    Uthne, K., Human somatomedins. Purification and studies of their biological actions, Acta Endocrinol. (Suppl.) 175: 1–35 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations