Maintenance of Constant Ion Concentration in Body Fluids: Sodium, Potassium, and Chloride

  • Samuel Natelson
  • Ethan A. Natelson


In the discussions in the preceding chapters, the following facts have been pointed out:
  1. 1.

    Stretch receptors and osmotic receptors signal the central nervous system to set in motion neural and humoral mechanisms to maintain constant volume and constant pressure in the extracellular fluid spaces.

  2. 2.

    Bicarbonate and pH levels are maintained constant. Change in these levels results in stimulation of the central nervous system, setting in motion mechanisms for their readjustment.

  3. 3.

    Blood pressure and metabolic rate, which in turn affect body temperature, are also under central nervous system control.

  4. 4.

    Function of individual organs, like the liver, kidney, and sweat glands, is also directly and indirectly controlled by the central nervous system tied to the composition and volume of the body fluids.



Sweat Gland Serum Potassium Level Fusidic Acid Adenosine Triphosphatase Periodic Paralysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading-Maintenance of Constant ion Concentration in Body Fluids: Sodium, Potassium, and Chloride

  1. Cort, J. Electrolytes, Fluid Dynamics and the Nervous System. Academic Press, New York (1966).Google Scholar
  2. Black, D. A., Essentials of Fluid Balance, 4th ed., Blackwell Davis, Philadelphia, Pennsylvania (1968).Google Scholar
  3. Roberts, K. E., Parker, V. J., and Poppell, J. W., Electrolyte Changes in Surge,,, Charles C Thomas, Springfield, Illinois (1958).Google Scholar
  4. Shoemaker, W. D. and Walker, W. F., Fluid—Electrolyte Therapy in Acute Illness, Year Book, Chicago, Illinois (1970).Google Scholar
  5. Carlson, F. D., Physiological and Biochemical Aspects of Nervous Integration, Prentice Hall, Englewood Cliffs, New Jersey (1968).Google Scholar
  6. Surawicz, B., Potassium and the Heart, Lea & Febiger, Philadelphia, Pennsylvania (1969).Google Scholar
  7. Berliner, R. W. et al., Physiology society symposium on neural control of body salt and water, Fed. Proc. 72: 1127–1159 (1968).Google Scholar
  8. Stein, W. D. The Movement of Molecules across Cell Membranes. Academic Press, New York (1967).Google Scholar
  9. Hoken, L. E., Ed., Metabolic Transport, Academic Press, New York (1972).Google Scholar
  10. Soffer, A., Ed., Potassium Therapy, Charles C Thomas, Springfield, Illinois (1968).Google Scholar


  1. 1.
    Pitts, R. F. Physiology of the Kidney and Body Fluids, 2nd ed., Year Book, Chicago, Illinois (1968).Google Scholar
  2. 2.
    Bajusz, E., Ed., Electrolytes and Cardiovascular Disease, Williams and Wilkins, Baltimore, Maryland (1965).Google Scholar
  3. 3.
    Maren, T. H., The relation between enzyme inhibition and physiological response in the carbonic anhydrase system, J. Pharmacol. Exp. Ther. 139: 140–153 (1963).Google Scholar
  4. 4.
    Clapp, J. R., Watson, J. F., and Berliner, R. W., Effect of carbonic anhydrase inhibition on proximal tubule bicarbonate reabsorption, Am. J. Physiol. 205: 693–696 (1963).Google Scholar
  5. 5.
    Rector, F. C., Jr., Seldin, D. W., Roberts, A. D., Jr., and Smith, J. S., The role of plasma CO2 tension and carbonic anhydrase activity in the renal re-absorption of bicarbonate, J. Clin. Invest. 39: 1706–1721 (1960).CrossRefGoogle Scholar
  6. 6.
    Rawls, Jr. J. A., Wistrand, P. J., and Maren, T. H., Affects of acid-base changes and carbonic anhydrase inhibition on pancreatic secretion, Am. J. Physiol. 205: 651–657 (1963).Google Scholar
  7. 7.
    Gibbs, G. E., Reimer, K., Kollmorgen, R. L., and Young, P. G., Quantitative microdetermination of enzymes in sweat glands, Am. J. Dis. Child. 105: 249252 (1963).Google Scholar
  8. 8.
    Bledsoe, T., Island, D. P., and Liddle, G. W., Studies of the mechanisms through which sodium depletion increases aldosterone biosynthesis in man, J. Clin. Invest. 45: 524–530 (1966).CrossRefGoogle Scholar
  9. 9.
    Gross, F., Regulation of aldosterone secretion by the renin-angiotensin system under various conditions, Acta Endocrinal. Suppl. 124: 41–64 (1967).Google Scholar
  10. 10.
    Farrell, G., Regulation of aldosterone secretion, Physiol. Rev. 38: 709–728 (1958).Google Scholar
  11. 11.
    Conn, J. W., Evolution of primary aldosteronism as a highly specific clinical entity, J. Am. Med. Assoc. 172: 1650–1653 (1960).CrossRefGoogle Scholar
  12. 12.
    Ganong, W. F., The central nervous system and the release of the adrenocorticotropic hormone, in Advances in Neuroendocrinology, Univ. of Illinois Press, Urbana, Illinois (1963), p. 92.Google Scholar
  13. 13.
    Dorfman, R. I. and Ungar, F., Metabolism of steroid hormones, Academic Press, New York (1965).Google Scholar
  14. 14.
    Hvidberg, E., Szporny, L. and Langgaard, H., The composition of aedema fluid provoked in mice by oestradiol, Acta Pharmacol. 20: 243–252 (1963).CrossRefGoogle Scholar
  15. 15.
    Bing, J. and Kazimierczak, J., Localization of renin in the kidney. III. Acta Pathol. Microbiol. Scand. 50: 1–11 (1960).CrossRefGoogle Scholar
  16. 16.
    Luetscher, J. A., Boyers, D. G., Cuthbertson, J. G., and McMahon, D. F., A model of the human circulation. Regulation by autonomic nervous system and renin-angiotensin system and influence of blood volume on cardiac output and blood pressure. Circulation Res. 32: Suppl. 1: 84–98 (1973).Google Scholar
  17. 17.
    Gunnells, J. C. Jr., Grim, C. E., Robinson, R. R., and Wildermann, N. M., Plasma renin activity in healthy subjects and patients with hypertension, Arch. Intern. Med. 119: 232–40 (1967).Google Scholar
  18. 18.
    Pabst, K., Renal excretory function following rapid infusion with solutions containing, and free of, sodium chloride, Arch. Ges. Physiol. 273: 315–24 (1961).CrossRefGoogle Scholar
  19. 19.
    Bergstrom, W. H. and Wallace, W. M., Bone as a sodium and potassium reservoir, J. Clin. Invest. 33:867–873 (1954); The participation of bone in the total body sodium metabolism in the rat, J. Clin. Invest. 34: 997–1004 (1955).Google Scholar
  20. 20.
    Bauer, G. C. H. and Carlsson, A., Rate of bone salt formation in a healing fracture determined in rats by means of radiophosphorus, Acta Orthopaed. Scand. 24: 27–34 (1955).Google Scholar
  21. 21.
    Forbes, G. B., Bone sodium and sodium-22 exchange: Relation to water content, Proc. Soc. Exp. Biol. Med. 102: 248–50 (1959).Google Scholar
  22. 22.
    MacCarty, C. S. and Cooper, I. S., Neurologic and metabolic effects of bilateral ligation of the anterior cerebral arteries in man, Proc. Staff. Meet., Mayo Clinic 26: 185–190 (1951).Google Scholar
  23. 23.
    Cooper, I. S., and MacCarthy, C. S., Unusual electrolyte abnormalities associated with cerebral lesions, Proc. Staff Meet. Mayo Clinic 26: 354–358 (1951).Google Scholar
  24. 24.
    Natelson, S., Crawford, W. L., and Munsey, F. A., in Correlation of Clinical and Chemical Observations in the Immature Infant, Illinois Dept. of Public Health, Div. of Preventive Medicine Publication (1952), p. 16.Google Scholar
  25. 25.
    Engstrom, W. W. and Liebman, A., Chronic hyperosmolarity of the body fluids with a cerebral lesion causing diabetes insipidus and anterior pituitary insufficiency, Am. J. Med. 15: 180–186 (1953).CrossRefGoogle Scholar
  26. 25a.
    Vajjajiva, A., Sitprija, V., and Shuangshoti, S., Chronic sustained hypernatremia and hypovolemia in hypothalamic tumor. A physiologic study, Neurology 19: 161–166 (1969).CrossRefGoogle Scholar
  27. 26.
    Natelson, S. and Alexander, M. O., Marked hypernatremia and hyperchloremia with damage to the central nervous system, Arch. Intern. Med. 96: 172–175 (1955).Google Scholar
  28. 27.
    Goodale, W. T. and Kinney, T. D., Sulfadiazine nephrosis with hyperchloremia and encephalopathy, Ann. Intern. Med. 31: 1118–1128 (1949).Google Scholar
  29. 28.
    Allott, E. N., Hypernatremia and hyperchloremia in bulbar poliomyelitis, Lancet 1: 246–250 (1957).CrossRefGoogle Scholar
  30. 29.
    Sweet, W. H., Cotzias, G. C., Seed, J., and Yakovlev, P. I., Gastrointestinal hemorrhages, hyperglycemia, azotemia, hyperchloremia and hypernatremia following lesions of frontal lobe in man, Ann. Res. Nerv. Ment. Dis. Proc. 27: 795–822 (1948).Google Scholar
  31. 30.
    Daily, W. J. R. and Victorin, J. L. H., Hyperosmolarity (hypernatremia) with cerebral disease. A report of two cases in children, Acta Paediat. Scand. 56: 97–104 (1967).Google Scholar
  32. 31.
    Taylor, W. H., Hypernatraemia in cerebral disorders, J. Clin. Pathol. 15: 211220 (1962).Google Scholar
  33. 31a.
    Christie, S. B. M., and Ross, E. J., Ectopic pinealoma with adipsea and hypernatraemia, Brit. Med. J. 2, 699–670 (1968).Google Scholar
  34. 32.
    Allott, E. N., Sodium and chloride retention without renal disease, Lancet 1: 1035–1037 (1939).CrossRefGoogle Scholar
  35. 33.
    Pleasure, D. and Goldberg, M., Neurogenic hypernatremia, Arch. Neurol. 15: 78–87 (1966).Google Scholar
  36. 34.
    Alvioli, L. V., Earley, L. E., and Kashima, H. K., Chronic and sustained hypernatremia. Absence of thirst, diabetes insipidus and ACTH insufficiency resulting from widespread destruction of the hypothalamus, Ann. Intern. Med. 56: 131–140 (1962).Google Scholar
  37. 34a.
    Mahoney, J. H. and Goodman, D., Hypernatremia due to hypodypsia and elevated threshold for vasopressin release. Effects of treatment with hydrochlorothiazide, chlorpropamide and tolbutamide, New Eng. J. Med. 279: 1191–1196 (1968).Google Scholar
  38. 35.
    Lewy, F. H. and Gassmann, F. K., Experiments on the hypothalamic nuclei in the regulation of chloride and sugar metabolism, Am. J. Physiol. 112: 504510 (1935).Google Scholar
  39. 36.
    Schoolman, H. M., Dubin, A., and Hoffman, W. S., Clinical syndromes associated with hypernatremia, Arch. Intern. Med. 95: 15–23 (1955).Google Scholar
  40. 37.
    Montgomery, R, Clinical conference at the Los Angeles Children’s Hospital, Case 2, hyperelectrolytemia and hyperosmolarity in an infant, J. Pediat. 42: 742–748 (1953).CrossRefGoogle Scholar
  41. 38.
    Goldberg, M. and Handler, J. S., Hyponatremia and renal wasting of sodium in patients with malfunction of the central nervous system, New Eng. J. Med. 263: 1037–1043 (1960).CrossRefGoogle Scholar
  42. 39.
    Peters, J. P., Welt, L. G., Sims, E. A. H., Orloff, J., and Needham, J. W., Salt wasting syndrome associated with cerebral disease, Trans. Ass. Am. Physicians 63: 57–64 (1951).Google Scholar
  43. 40.
    Carter, N. W., Rector, F. C., Jr., and Seldins, D. W., Hyponatremia in cerebral disease resulting from the inappropriate secretion of the antidiuretic hormone, New Eng. J. Med. 264: 67–72 (1961).CrossRefGoogle Scholar
  44. 41.
    Pincus, J. B., Gittleman, I. F., Saito, M., and Sobel, A. F., A study of plasma values of sodium, potassium, chloride, carbon dioxide tension, carbon dioxide, sugar, urea, and the protein base-binding power, pH and hematocrit on the first day of life, Pediatrics 18: 39–49 (1956).Google Scholar
  45. 42.
    Clapp, J. R. and Rector, F. C., The mechanism of renal chloride reabsorption, Clin. Res. 9: 56 (1961).Google Scholar
  46. 43.
    Natelson, S., Chronic alkalosis with damage to the central nervous system, Clin. Chem. 4: 32–42 (1958).Google Scholar
  47. 44.
    Rowntree, L. G. Boucek, R. J., and Noble, N. L., Anomalous type of salt and water retention with persistent edema, J. Am. Med. Assoc. 161: 877–879 (1956).CrossRefGoogle Scholar
  48. 45.
    Deane, N. and Smith, H. W., The distribution of sodium and potassium in man, J. Clin. Invest. 31: 197–199 (1952).CrossRefGoogle Scholar
  49. 46.
    Beilin, L. J., Knight, G. J., Munroe-Faure, A. D., and Anderson, J., The sodium, potassium and water contents of healthy human adults, J. Clin. Invest. 45: 1817–1825 (1966).CrossRefGoogle Scholar
  50. 47.
    Katz, A. I. and Epstein, F. H., The role of sodium-potassium activated adenosine triphosphatase in the reabsorption of sodium in the kidney, J. Clin. Invest. 46: 1999–2011 (1967).CrossRefGoogle Scholar
  51. 47a.
    Kintner, E. P., Chemical structure of erythrocytes with emphasis on Donnan equilibrium, Ann. Clin. Lab. Sci. 2: 326–334 (1972).Google Scholar
  52. 48.
    Ussing, H. H., The distinction by means of tracers, between active transport and diffusion. The transfer of iodide across the isolated frog skin, Acta Physiol. Scand. 19: 43–56 (1949).CrossRefGoogle Scholar
  53. 49.
    Boyle, P. J. and Conway, E. J., Potassium accumulation in muscle and associated changes, J. Physiol. 100: 1–63 (1941).Google Scholar
  54. 50.
    Ussing, H. H., Transport of ions across cellular membranes, Physiol. Rev. 29: 127–155 (1949).Google Scholar
  55. 51.
    Ling, G., Muscle electrolytes, Am. J. Phys. Med. 34: 89–101 (1955).Google Scholar
  56. 52.
    Ling, G. N. and Cope, F. W., Potassium ion: Is the bulk of intracelluar K+ adsorbed? Science 163: 1335–1336 (1969).CrossRefGoogle Scholar
  57. 53.
    Fenn, W. O., Deposition of potassium and phosphate with glycogen in rat livers, J. Biol. Chem. 128: 297–307 (1939).Google Scholar
  58. 54.
    Altman, P. L. and Dittmer, D. S., Eds., Membrane Transport of Nutrients, Classification of Transport Processes in Metabolism, Fed. Am. Soc. for Exp. Biology, Bethesda, Maryland (1968).Google Scholar
  59. 55.
    Post, R. L., Merritt, C. R., Kinsolving, C. R., and Albright, C. D., Membrane adenosine triphosphatase as a participant in the active transport of Na and K in the human erythrocyte, J. Biol. Chem. 235: 1796–1802 (1960).Google Scholar
  60. 55a.
    Perrone, J. R. and Blostein, R., Asymmetric interaction of inside out and right side out erythrocyte membrane vesicles with ouabain, Biochim. Biophys. Acta 291: 680–689 (1973).CrossRefGoogle Scholar
  61. 56.
    Whittam, R., Control of membrane permeability to potassium in red cells, Nature 219: 610 (1968).CrossRefGoogle Scholar
  62. 57.
    Garrahan, P. J. and Glynn, I. M., Driving the sodium pump backwards to form adenosine triphosphate, Nature 211: 1414–1415 (1966).CrossRefGoogle Scholar
  63. 58.
    Shelburne, J. D. and Trump, B. F., Disorders of cell volume regulation. I. Effects of inhibition of plasma membrane adenosine triphosphatase with ouabain, Am. J. Pathol. 53: 1041–1071 (1968).Google Scholar
  64. 59.
    Whittam, R. and Ager, M., Dual effects of sodium ions on membrane adenosine triphosphatase, Biochim. (1962).Google Scholar
  65. 60.
    Glynn, I. M., Relation between ouabain-sensitive potassium efflux hypothetical dephosphorylation step in transport ATPase system, J. Physiol. 51: 385–388 (1968).Google Scholar
  66. 61.
    Potter, H. A., Charnock, J. S., and Opit, L. J., The separation of sodium and potassium-activated adenosine-triphosphate from a sodium or potassiumGoogle Scholar
  67. inhibited adenosine triphosphatase of cardiac muscle, Austral. J. Exp. Biol. Med. Sci. 44: 503–518 (1966).Google Scholar
  68. 62.
    Opit, L. J. and Chamock, J. S., A molecular model for a sodium pump, Nature 209: 471–474 (1965).CrossRefGoogle Scholar
  69. 63.
    Asukuta, T., Sato, Y., Minikami, S., and Yoshikawa, H., pH dependency of 2,3 diphosphoglycerate content in red blood cells, Clin. Chim. Acta 14: 840841 (1966).Google Scholar
  70. 64.
    Mezumo, N., Nagano, K, Nakao, T., and Tashima, Y., Approximation of molecular weight of Na+-K+-ATPase, Biochim. Biophys. Acta 168: 311–320 (1968).Google Scholar
  71. 65.
    Post, R. L., Kume S., Tobin, T., Orcutt, B., and Sen, A. K., Flexibility of an active center in sodium plus potassium adenosine triphosphatase, J. Gen. Physiol. 54:306.-326. (1969).Google Scholar
  72. 66.
    Post, R. L., Kume, S., and Rogers, R. N., in Mechanism in Bioenergetics, Azzone, G. F., Ed., Academic Press, New York (1973).Google Scholar
  73. 67.
    Barry, R. J. C., Electrical changes in relation to transport, Brit. Med. Bull. 23: 266–269, (1967).Google Scholar
  74. 68.
    Fujita, M., Ota, H., Kawai, K., Matsui, H., and Nakao, M., Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa; mutually exclusive distribution of digestive enzymes and ouabain sensitive ATPase, Biochin. Biophys. Acta 274:336–347 (1972); J. Physiol. 227: 377 (1972).Google Scholar
  75. 69.
    Blostein, R., Sodium activated adenosine triphosphatase activity of the erythrocyte membrane, J. Biol. Chem. 245: 270–275 (1970).Google Scholar
  76. 70.
    Chen, R. F., Familial periodic paralysis. Report of a case resistant to dextrose and insulin provocation, Arch. Neurol. 1: 475–484 (1959).Google Scholar
  77. 71.
    French, E. B. and Kilpatrick, R., A variety of paramyotonia congenita, J. Neurol. Neurosurg. Psychiat. 20: 40–46 (1957).CrossRefGoogle Scholar
  78. 72.
    Layzer, R. B., Lovelace, R. E., and Rowland, L. P., Hyperkalemic periodic paralysis, Arch. Neurol. 16: 455–472 (1967).Google Scholar
  79. 73.
    Gamstorp, I., Hauge, M., Helweg-Larsen, H. F., Mjones, H., and Sagild, U. Adynamia episodica hereditaria, Am. J. Med. 23: 385–390 (1957).CrossRefGoogle Scholar
  80. 74.
    McFadzean, A. J. S. and Yeung, R. Periodic paralysis complicating thyrotoxicosis in Chinese, Brit. Med. J. 1: 451–455 (1967)CrossRefGoogle Scholar
  81. 75.
    Poskanzer, D. C. and Kerr, D. N. S., A third type of periodic paralysis with normokalemia and favorable response to sodium chloride, Am. J. Med. 31: 328–342 (1961).CrossRefGoogle Scholar
  82. 75a.
    Tyler, F. H., Stephens, F. E., Gunn, F. D., and Perkoff, G. T., Studies in disorder of muscles. VII Clinical manifestations and inheritance of a type of periodic paralysis without hypopotassemia, J. Clin. Invest. 30: 492–502 (1951).CrossRefGoogle Scholar
  83. 76.
    Braun, H. A., Surawicz, B., and Bellet, S., T waves in hyperpotassemia, their differentiation from simulating T waves in other conditions, Am. J. Med. Sci. 230: 147–156 (1955).CrossRefGoogle Scholar
  84. 76a.
    Samaha, F. J., Von Eulenberg’s paramyotonia, Trans. Am. Neurol. Assoc. 89: 87–91 (1964).Google Scholar
  85. 77.
    Bellet, S., Steiger, W. A., Nadler, C. S., and Gazes, P. C., Electrocardiographic patterns in hypopotassemia; observations on 79 patients, Am. J. Med. Sci. 219: 542–558 (1950).CrossRefGoogle Scholar
  86. 78.
    Evans, B. M. and Milne, M. D., Potassium-losing nephritis presented as a case of periodic paralysis, Brit. Med. J. 2: 1067–1071 (1954).CrossRefGoogle Scholar
  87. 79.
    Kartal, J. P., Leve, L., Ryder, H. W., and Horowitz, M. G., Renal tubular acidosis with hypokalemia symptoms, Arch. Intern. Med. 107: 743–749 (1961).Google Scholar
  88. 80.
    Giebisch, G., Windhager, E. E., and Malnic, G., Renal control of sodium and potassium of body fluids, in 23rd Int. Congr. Physiol. Soc. Lect. Symp. Tokyo (1965), pp. 167–75Google Scholar
  89. 81.
    Christy, N. P. and Laragh, J. H., Pathogenesis of hypokalemic alkalosis in Cushing’s syndrome, New Eng. J. Med. 265: 1083–1088 (1961).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations