Maintenance of Constant Osmotic Pressure in Body Fluids

  • Samuel Natelson
  • Ethan A. Natelson


At 0°C and 760 mmHg pressure (1 atm), 1 mol of an ideal gas will occupy 22.4 liters. If 1 mol of glucose is dissolved in 22.4 liters of water, the osmotic pressure will be 1 atm.1 The glucose molecules, like the gas molecules, exert their pressure by bombarding the walls of the container. They act as though they were in the gaseous form and the water was merely space. The assumption being made here is that glucose is an “ideal” substance, that is, it does not react with the water molecules. This is not quite the case for glucose but we will make this assumption for the present.


Antidiuretic Hormone Osmotic Pressure Extracellular Fluid Interstitial Fluid Evans Blue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading—Constant Osmotic Pressure and Body Fluids

  1. Brooks, S. M., Basic Facts of Body Water and Ions, 3rd ed., Springer Publishing, New York (1973).Google Scholar
  2. Chapman, G., Body Fluids and Their Functions, St. Martin, New York (1967). Weisberg, H. F., Water, Electrolyte and Acid Base Balance, 2nd ed., Williams and Wilkins (1962).Google Scholar
  3. Potts, W. T. and Parry, G., Osmotic and Ionic Regulators in Animals, Pergamon, New York (1963).Google Scholar
  4. Muntwyler, E. and Mautz, F. R., Electrolyte and water equilibria in the body, in Medical Physics, Glasser, O., Ed. Year Book, Chicago, Illinois (1944), pp. 371–377.Google Scholar
  5. Strauss, M. B., Body Water in Man, The Acquisition and Maintenance of the Body Fluids, Little, Brown, and Company, Boston, Massachusetts (1957).Google Scholar
  6. Wolf, A. V., Thirst, Physiology of the Urge to Drink and Problems of Water Lack, C. C. Thomas, Springfield, Illinois (1958).Google Scholar
  7. Brozek, J., Human Body Composition, Pergamon, New York (1945).Google Scholar


  1. 1.
    Van’t Hoff, J. H., The role of osmotic pressure in the analogy between solutions and gases, Z. Physik. Chem. 1: 481–508 (1887).Google Scholar
  2. 2.
    Dormandy, T. L., Osmometry, Lancet 1: 267–270 (1967).CrossRefGoogle Scholar
  3. 3.
    Bowman, R. L., Trantham, H. V., and Caulfield, P. A., An instrument and method for rapid dependable determination of freezing point depression, J. Lab. Clin. Med. 43: 310–315 (1954).Google Scholar
  4. 4.
    Berger, E. Y., Dunning, M. F., Brodie, B. B., and Steele, J. M., Body Water compartments in man, Fed. Proc. 8: 10 (1949).Google Scholar
  5. 5.
    Levitt, M. F. and Gaudino, M., Measurement of body water compartments, Am. J. Med. 9: 208–215 (1950).CrossRefGoogle Scholar
  6. 6.
    Edelman, I. S. and Leibman, J., Anatomy of body water and electrolytes Am. J. Med. 27: 256–277 (1959).CrossRefGoogle Scholar
  7. 7.
    Deane, H., Intracellular water in man, J. Clin. Invest. 30: 1469–1470 (1951).CrossRefGoogle Scholar
  8. 8.
    Check, D. B., Extracellular volume, its structure and measurement and the influence of age and disease, J. Pediatrics 58: 103–125 (1961).CrossRefGoogle Scholar
  9. 9.
    Fellers, F. X., Barnett, H. L., Hare, K., and McNamara, H., Change in thiocyanate and sodium-24 spaces during growth, Pediatrics 3: 622–629 (1949).Google Scholar
  10. 10.
    Berson, S. A. and Yalow, R. S., Critique of extracellular space measurements with small ions, Naafi and Bréa spaces, Science 121: 34–36 (1955).CrossRefGoogle Scholar
  11. 11.
    Tomaszewski, L., A new principle for the determination of the extracellular fluid, Clin. Chim. Acta 16: 417–427 (1967).CrossRefGoogle Scholar
  12. 12.
    Lesser, G. T., Perl, W., and Steele, J. M., Determination of total body fat by absorption of an inert gas, measurements and results in normal human subjects, J. Clin. Invest. 39: 1791–1806 (1960).CrossRefGoogle Scholar
  13. 13.
    Osserman, E. F., Pitts, G. C., Welham, W. C., and Behnke, A. R., In vivo measurement of body fat and body water in a group of normal men, J. Appi. Physiol. 2:633–639 (1950).Google Scholar
  14. 14.
    Werdein, E. J. and Kyle, L. H., Estimation of the constancy of density of the fat-free body,J. Clin. Invest. 39: 626–629 (1960).CrossRefGoogle Scholar
  15. 15.
    Behnke, A. R., Feen, B. G., and Welham, W. C., The specific gravity of healthy men; body weight - volume as index of obesity, J.A.M.A. 188:495¬498 (1942).Google Scholar
  16. 16.
    Von Porat, B., Blood volume determinations with the Evans Blue Dye, Acta Med. Scand. Suppl. p. 256 (1951).Google Scholar
  17. 17.
    Hastings, A. B., Salvesen, H. A., and Van Slyke, D. D., Studies of gas and electrolyte equilibria in blood; distribution of electrolytes between transudates and serum, J. Gen. Physiol. 8: 701–711 (1927).CrossRefGoogle Scholar
  18. 18.
    Van Slyke, D. D., Factors Affecting the Distribution of Electrolytes, Water and Gases in the Animal Body, Monograph on Experimental Biology, Lippincott, Philadelphia, Pennsylvania, (1926).Google Scholar
  19. 19.
    Greene, C. H. and Power, M. H., Distribution of electrolytes between serum and in vivo dialysate,J. Biol. Chem. 91: 183–202 (1931).Google Scholar
  20. 20.
    Henry, J. P., Gauer, O. H., and Reeves, J. L., Evidence of the atrial location of receptors influencing urine flow, Circ. Res. 4: 85–90 (1956).Google Scholar
  21. 21.
    Gilmore, J. P., Contribution of cardiac nerves to the control of body salt and water, Fed. Proc. 27: 1156–1159 (1968).Google Scholar
  22. 22.
    Share, L. and Levy, M. H., Cardiovascular receptors and blood titer of antidiuretic hormone, Am. J. Physiol. 203: 425–428 (1962).Google Scholar
  23. 23.
    Share, L., Vasopressin, its bioassay and the physiological control of its release, Am. J. Med. 42: 701–712 (1967).CrossRefGoogle Scholar
  24. 24.
    Arndt, J. O., Reineck, H. and Gauer, O. H., Renal excretory function and hemodynamics on stretching of the left atrium in anesthetized dogs, Arch. Ges. Physiol. 277: 1–15 (1963).CrossRefGoogle Scholar
  25. 25.
    Perlmutt, J. H., Contribution of carotid and vagal reflex mechanisms. Sym posium on neural control of body salt and water, Fed. Proc. 27: 1149–1155 (1968).Google Scholar
  26. 26.
    Gaunt, R. and Birnie, J. H., Hormones and Body Water, C. C. Thomas, Springfield, Illinois (1951).Google Scholar
  27. 27.
    Chambers, G. H., Melville, E. V., Hare, R. S., and Hare, K., Regulation of release of pituitrin by changes in osmostic pressure of plasma, Am. J. Physiol. 144: 311–320 (1945).Google Scholar
  28. 28.
    Verney, E. B., Antidiuretic hormone and the factors which determine its release, Proc. Roy. Soc.(Lond.) 135: 25–106 (1948).CrossRefGoogle Scholar
  29. 29.
    Bornstein, P., Brandt, I., and Epstein, F. H., Selective failure of osmotic receptors in diabetes insipidus, Clin. Res. 9: 199 (1961).Google Scholar
  30. 30.
    Haberich, F. J., Osmoreception in the portal circulation, Fed. Proc. 26:1137¬(1968).Google Scholar
  31. 31.
    Berliner, R. W., Intrarenal mechanisms in the control of sodium secretion, Fed. Proc. 27: 1127–1131 (1968).Google Scholar
  32. 32.
    Gauer, O. H., Osmocontrol versus volume control,Fed. Proc. 27: 1132–1136 (1968).Google Scholar
  33. 33.
    Earley, L. E. and Friedler, R. M., The effects of combined renal vasodilation and pressor agents on renal hemodynamics and the tubular reabsorption of sodium, J. Clin. Invest. 45: 542–51 (1966).CrossRefGoogle Scholar
  34. 34.
    August, J. T., Nelson, D. H. and Thorn, G. W., Aldosterone. New Eng. J. Med. 259: 917–923 (1958).CrossRefGoogle Scholar
  35. 35.
    Hodge, R. L., Lowe, R. D., and Vane, J. R., The effects of alteration of blood volume on the concentration of circulating angiotensin in anaesthetized dogs, J. Physiol. 185: 613–26 (1966).Google Scholar
  36. 36.
    Sunsten, J. W. and Sawyer, C. H., Electroencephalographic evidence of osmosensitive elements in olfactory bulb of dog brain, Proc. Soc. Exp. Biol. Med. 101: 524–27 (1959).Google Scholar
  37. 37.
    Corvian, M. R. and Antunes—Rodriguez, J., Specific alterations in sodium chloride intake after hypothalamic lesions in the rat, Am. J. Physiol. 205:922¬926 (1963).Google Scholar
  38. 38.
    Haber, E., Recent developments in pathophysiologic studies of the renin¬angiotensin system, New Eng. J. Med. 280: 148–155 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations