Advertisement

Maintenance of Constant pH in the Human

  • Samuel Natelson
  • Ethan A. Natelson

Abstract

The problem the body faces is created by the fact that it obtains its energy for existence by oxidation of foods.

Keywords

Carbonic Anhydrase Carbonic Anhydrase Inhibitor Acetoacetic Acid Phenylpyruvic Acid Nitro Phenyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Selected Reading—Maintenance of Constant pH in the Human

  1. Siggaard-Andersen, O., Acid—Base Status of the Blood, 3rd ed., Williams and Wilkins, Baltimore, Maryland (1974).Google Scholar
  2. Christensen, H. N., Body Fluid and the Acid Base Balance, Saunders, Philadelphia, Pennsylvania (1964).Google Scholar
  3. Pappenheimer, J. R., The ionic composition of cerebral extracellular fluid and its relation to control of breathing, in The Harvey Lectures,Series 61, Academic Press, New York (1965-1966), pp. 71-94.Google Scholar
  4. Edsall, J. T., The carbonic anhydrases of the erythrocytes, in The Harvey Lectures,Series 62, Academic Press, New York (1966-1967), pp. 191-230.Google Scholar
  5. Peters, J. P. and Van Slyke, D. D., Quantitative Clinical Chemistry, Vol. I. Hemoglobin and Oxygen, Williams and Wilkins, Baltimore, Maryland (1931), pp. 518 - 652.Google Scholar
  6. Filley, G. F., Acid-Base and Blood Gas Regulation, Lea and Febiger, Philadelphia (1971).Google Scholar

Reference

  1. 1.
    Schwartz, W. B., Brackett, N. C., Jr., and Cohen, J. J., The response of extracellular hydrogen ion concentration’to graded degrees of chronic hypercapnia: The physiologic limits of the defense of pH, J. Clin. Invest. 44: 291–301 (1965).CrossRefGoogle Scholar
  2. 2.
    Needham, C. D., Rogan, M. C., and MacDonald, I., Normal standards for lung volumes, intrapulmonary gas-mixing and maximum breathing capacity, Thorax 9: 313–325 (1954).CrossRefGoogle Scholar
  3. 3.
    Leusen, I. R., Chemosensitivity of the respiratory center. Influence of changes of H+ and total buffer concentration in the cerebral ventricles on respiration, Am. J. Physiol. 176: 45–51 (1954).Google Scholar
  4. 4.
    Wyman, J., Jr., Analysis of the titration data of oxyhemoglobin of the horse by a thermal method, J. Biol. Chem. 127: 1–13 (1939).Google Scholar
  5. 4a.
    Ferguson, J. K. W. and Roughton, F. J. W., Chemical relations and physiological importance of carbamino compounds of CO2 with Hemoglobin, J. Physiol. 83: 87–102 (1934).Google Scholar
  6. 4b.
    Rossi, L. and Roughton, F. J. W., The effect of carbamino-Hb compounds on the buffer power of human blood at 37°C, J. Physiol. (proc.) 167: 15p - 16p (1963).Google Scholar
  7. 5.
    d’Elseaux, F. C., Blackwood, F. C., Palmer, L. E., and Sloman, K. G., Acid base equilibrium in the normal, J. Biol. Chem. 144: 529–535 (1942).Google Scholar
  8. 6.
    Saper, D. G., Levine, D. Z., and Schwartz, W. B., The effects of chronic hypoxemia on electrolyte and acid-base equilibrium. An examination of normocapneic hypoxemia and of the influence of hypoxemia on the adaptation to chronic hypercapnia, J. Clin. Invest. 46: 369–377 (1967).CrossRefGoogle Scholar
  9. 7.
    Goldwitzer-Meier, K. The buffering action of serum proteins, Biochem. Z. 163: 470 (1925).Google Scholar
  10. 8.
    Prasad, A. S., Flink, E. B., and Zinneman, H. H., The base binding property of the serum proteins with respect to magnesium. J. Lab. Clin. Med. 54: 357364 (1959).Google Scholar
  11. 9.
    Edsal, J. T. Reversible combination of serum albumin and other plasma proteins with small molecules or ions: Factors affecting stability to heat, inGoogle Scholar
  12. Advances in Protein Chemistry,Vol. III Academic Press, New York (1947), pp. 463–473.Google Scholar
  13. 10.
    Van Slyke, D. D., Hastings, A. B., Hiller, A., and Sendroy, J., Jr., Studies of gas and electrolyte equilibria in blood. XIV. The amounts of alkali bound by serum albumin and globulin, J. Biol. Chem. 79: 769–780 (1928).Google Scholar
  14. 11.
    Gamble, J. L., Chemical Anatomy, Physiology and Pathology of Extracelluar Fluid, 6th ed., Harvard Univ. Press, Cambridge, Massachusetts (1954).Google Scholar
  15. 12.
    Donnan, F. G., Z. Elektrochem. 17: 572 (1911).Google Scholar
  16. 13.
    Van Slyke, D. D., Wu, H., and McLean, F. C., Studies of gas and electrolyte equilibria in blood. Factors controlling electrolyte and water distribution in blood, J. Biol. Chem. 56: 765–849 (1923).Google Scholar
  17. 13a.
    Kintner, E. P., Chemical structure of erythrocytes with emphasis on Donnan equilibrium, Ann. Clin. Lab. Sci. 2: 326–334 (1972).Google Scholar
  18. 14.
    Maizels, M. and Paterson, J. L. H., Base binding in erythrocytes, Biochem. J. 31: 1642–1656 (1937).Google Scholar
  19. 15.
    Farmer, S. N. and Maizels, M., Organic anions of human erythrocytes, Biochem. J. 33: 280–289 (1939).Google Scholar
  20. 16.
    Henderson, L. J., Blood: A Study in General Physiology, Yale Univ. Press, New Haven, Connecticut (1928).Google Scholar
  21. 17.
    Van Slyke, D. D., Hastings, A. B., Heidelberger, M., and Neill, J. M., Studies of gas and electrolyte equilibria in blood. III The alkali-binding and buffer values of oxyhemoglobin and reduced hemoglobin, J. Biol. Chem. 54: 482–506 (1922).Google Scholar
  22. 18.
    Handbook of Clinical Laboratory Data,2nd ed., Chem. Rubber Co., Cleveland, Ohio (1968).Google Scholar
  23. 19.
    Antonis, A., Clark, M., and Pilkington, T. R. E., A semiautomated fluorimetric method for the enzymatic determination of pyruvate, lactate, acetoacetate and ß-hydroxybutyrate levels in plasma, J. Lab. Clin. Med. 68: 340–356 (1966).Google Scholar
  24. 20.
    Gibbons, B. H. and Edsall, J. T., Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25°C, J. Bid. Chem. 238: 3502–3607 (1963).Google Scholar
  25. 21.
    Armstrong, J. McD., Myers, D. V., Verpoorte, J. A., and Edsall, J. T., Purification and properties of human erythrocyte carbonic anhydrases, J. Biol. Chem. 241: 5137–49 (1966).Google Scholar
  26. 22.
    Natelson, S., Leighton, D. R., and Calas, C., Assay for the elements chromium, manganese, iron, cobalt, copper and zinc simultaneously in human serum and sea water by X-ray spectrometry, Microchem. J. 6: 539–556 (1962).CrossRefGoogle Scholar
  27. 23.
    Laurent, G., Charrel, M. Marriq, C., Garcon, D, and Darrien, Y., C.rbonic anhydrases of human erythrocytes. III Amino acid composition, Bull. Soc. Chim. Biol. 48:1125–1136; 1251–1264 (1966).Google Scholar
  28. 24.
    Packer, Y. and Meany, S. E., The catalytic versatility of erythrocyte carbonic anhydrase. II. Kinetic studies of the enzyme-catalyzed hydration of pyridine aldehydes, Biochem. 6: 239–246 (1967).CrossRefGoogle Scholar
  29. 25.
    Packer, Y. and Stone, J. T., The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme catalyzed hydrolysis of p nitro phenyl acetate, Mothers:. 6: 668–678 (1967).Google Scholar
  30. 25a.
    Natelson, S. and Tietz, N., Blood pH measurement with the glass electrode—Study of venous and fingertip blood, Clin. Chem. 2: 320–327 (1956).Google Scholar
  31. 26.
    Mann, T. and Keilin, D., Sulfanilamide as a specific inhibitor of carbonic anhydrase, Nature 146: 164–5 (1940).CrossRefGoogle Scholar
  32. 27.
    Gilman, A., The Mechanism of action of the carbonic anhydrase inhibitors Ann. N. Y. Acad. Sci. 91 :355–362 (1958).Google Scholar
  33. 28.
    Natelson, S., Chronic alkalosis with damage to the central nervous system Clin. Chem. 4 : 32–42 (1958).Google Scholar
  34. 29.
    Weatherall, D. J. and McIntyre, P. A., Developmental and acquired variations in erythrocyte carbonic anhydrase, Brit. J. Herne. 13: 106–114 (1967).CrossRefGoogle Scholar
  35. 30.
    Eng, L. L. and Tarail, R., Carbonic anhydrase deficiency with persistence of foetal haemoglobin: A new syndrome, Nature 211: 47–49 (1966).CrossRefGoogle Scholar
  36. 31.
    Weatherell, D. J., Edwards, J. A., and Donohue, W. T. A., Haemoglobin and red cell enzyme changes in juvenile myeloid leukemia, Brit. Med. J. 1: 679–681 (1968).CrossRefGoogle Scholar
  37. 32.
    Weatherell, D. J. and Brown, M. J., Juvenile chronic myeloid leukemia Lancet 1:526 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations