Advertisement

Partial Pressures (\({p_{{O_2}}}\) and \({p_{C{O_2}}}\))

  • Samuel Natelson
  • Ethan A. Natelson

Abstract

The total pressure of a mixture of gases is equal to the sum of the pressures of all the gases present as though each were there alone. For example, if a gas in a sealed container is at 1 atm pressure and consists of 20% oxygen and 80% nitrogen, then if the oxygen is removed at constant volume, we have 0.8 atm of pressure.

Keywords

Partial Pressure Oxygen Content Dissociation Curve Respiratory Exchange Ratio Oxygen Affinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Selected Reading—Partial Pressures

  1. Astrup,P. and Rorth,M., Eds., Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status, Academic Press,New York(1972)Google Scholar
  2. Present,R.D., Kinetic Theory of Gases McGraw-Hill,New York(1958)Google Scholar
  3. Dittmer, D.S. and Grebe,R.M. Handbook of Respiration, Saunders,Philadelphia Pennsylvania(1958)Google Scholar

Selected Reading—Blood and Alveolar Pco2 and Po2

  1. Comroe, J. H., Jr., Forster, R. E. II, Dubois, A. B., Briscoe, W. A., and Carlsen, E., The Lung, Clinical Physiology and Pulmonary Function Tests, Year Book, 2nd ed., Chicago, Illinois (1967).Google Scholar
  2. Pace, W. R., Jr., Pulmonary Physiology in Clinical Practice, 2nd ed., F. A. Davis Company (1970).Google Scholar
  3. Woolner, R. F., Ed., A Symposium on pH and Blood Gas Measurement, Little, Brown, and Company, Boston (1959).Google Scholar
  4. Torrance, R. W., Ed., Arterial Chemoreceptors, Blackwell, Oxford (1968). Comroe, J. H., Jr. Physiology of Respiration, Year Book, Chicago, Illinois (1965).Google Scholar
  5. Comroe,J.H.,Jr.physiology of Respiration, Year Book,Chicago, Iiiinois(1965)Google Scholar

References

  1. 1.
    Standard atmosphere, in Handbook of Chemistry and Physics,46th ed., Chemical Rubber Publ. Co., Cleveland, Ohio (1965-6), p. F-116.Google Scholar
  2. 2.
    Handbook of Chemistry and Physics,Chemical Rubber Publ. Co., Cleveland, Ohio (1965-6), pp. D-94, D-95.Google Scholar
  3. 3.
    Arndt, H. and Dolle, W., Comparative investigations with a quickly recording CO2 electrode and the Astrup equipment in the determination of CO2 pressure in human blood, Klin. Wochenschr. 44, 511 - 15 (1966).CrossRefGoogle Scholar
  4. 4.
    Sveringhaus, J. W., Blood gas calculator, J. Appl. Physiol. 21: 1108 - 1116 (1966).Google Scholar
  5. 5.
    Roughton, F. J. W., Recent work on carbon dioxide transport of the blood, Physiol. Rev. 15: 241 - 296 (1935).Google Scholar
  6. 6.
    Hill, A. V., The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol. 40: IV (1910).Google Scholar
  7. 7.
    Severinghaus, J. W., Design of a capillary pH electrode incorporating an open liquid junction and reference electrode in a single unit, Scand. J. Clin. Lab. Invest. 17: 614 - 616 (1965).CrossRefGoogle Scholar
  8. 8.
    Astrup, P., Engel, K., Severinghaus, J. W., and Munson, E., The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood, Scand. J. Clin. Lab. Invest. 17: 515 - 523 (1965).CrossRefGoogle Scholar
  9. 9.
    Natelson, S. and Menning, C. M., Improved methods of analysis for oxygen, carbon monoxide and iron on fingertip blood, Clin. Chem. 1: 167 - 179 (1955).Google Scholar
  10. 10.
    Van Slyke, D. D. and Neil, J., The determination of gases in blood and other solutions by vacuum extraction and manometric measurement, J. Biol. Chem. 61: 523 - 573 (1924).Google Scholar
  11. 11.
    Maas, A. H. J., Hamelink, M. L., and De Leeuw, R. J. M., An evaluation of the spectrophotometric determination of Hb02, HbCO and Hb in blood with the co-oximeter I. L. 182, Clin. Chim. Acta 29: 303 - 309 (1970).Google Scholar
  12. 12.
    Cole, J. S., Martin, W. E., Cheung, P. W., and Johnson, C. C., Clinical studies with a solid state fiberoptic oximeter, Am. J. Cardiology 29: 383 - 388 (1972).CrossRefGoogle Scholar
  13. 13.
    Benesch, R. and Benesch, R. E., The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin, Biochem. Biophys. Res. Commun. 26: 162 - 167 (1967).CrossRefGoogle Scholar
  14. 14.
    Chanutin, A. and Curnish, R. R., Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes, Arch. Biochem. Biophys. 121: 96 - 102 (1967).CrossRefGoogle Scholar
  15. 14a.
    Mansouri, A. and Winterhalter, K. H., Nonequivalence of chains in hemoglobin oxidation and oxygen binding. Effect of organic phosphates, Biochemistry 13: 3311 - 3314 (1974).CrossRefGoogle Scholar
  16. 15.
    Oski, F. A., Miller, L. D., Delivoria-Papadopoulos, M., Manchester, J. H., and Shelburne, J. C., Oxygen affinity in red cells: Changes induced in vivo by propranolol, Science 175: 1372 - 1373 (1972).CrossRefGoogle Scholar
  17. 16.
    Klocke, R. A., Oxygen transport and 2,3-diphosphoglycerate (DPG), Chest 62 (suppl., part 2): 79S - 85S (1972).Google Scholar
  18. 17.
    Rosenthal, A., Mentzer, W. C., Eisenstein, E. B., Nathan, D. G., Nelson, N. M., and Nadas, A. S., The role of red blood cell organic phosphate in adaptation to congenital heart disease, Pediatrics 47: 537 - 547 (1971).Google Scholar
  19. 18.
    Woodson, R. D., Torrance, J. D., Shappell, S. D., and Lenfant, C., The effect of cardiac disease on hemoglobin-oxygen binding, J. Clin. Invest. 49: 1349 - 1356 (1970).CrossRefGoogle Scholar
  20. 19.
    Charache, S., Grisolia, S., Fiedler, A. J., and Hellegers, A. E., Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia, J. Clin. Invest. 49: 806 - 812 (1970).CrossRefGoogle Scholar
  21. 20.
    Bromberg, P. A. and Jensen, W. N., Blood oxygen dissociation curves in sickle cell disease, J. Lab. Clin. Med. 70: 480 - 488 (1967).Google Scholar
  22. 21.
    Stamatoyannopoulos, G., Parer, J. T., and Finch, C. A., Physiologic implications of a hemoglobin with decreased oxygen affinity (hemoglobin Seattle), N. Eng. J. Med. 281: 915 - 919 (1969).CrossRefGoogle Scholar
  23. 22.
    Bunn, H. F. and Briehl, R. W., The interaction of 2,3-diphosphoglycerate with various human hemoglobins, J. Clin. Invest. 49: 1088 - 1095 (1970).CrossRefGoogle Scholar
  24. 23.
    Brannon, E. S., Merrill, A. J., Warren, J. V., and Stead, É. A., Jr., The cardiac output in patients with chronic anemia as measured by the techniques of right atrial catheterization, J. Clin. Invest. 24: 332 - 336 (1945).CrossRefGoogle Scholar
  25. 24.
    Lenfant, C. A., Ways, P., Aucutt, C., and Cruz, J., Effect of chronic hypoxic hypoxia on the 02-Hb dissociation curve and respiratory gas transport in man, Respir. Physiol. 7: 7 - 29 (1969).CrossRefGoogle Scholar
  26. 25.
    Edwards, M. J. and Cannon, B., Normal levels of 2,3-diphosphoglycerate in red cells despite severe hypoxemia of chronic lung disease, Chest 61: 258 - 268 (1972).CrossRefGoogle Scholar
  27. 26.
    Oski, F. A., Gottlieb, A. J., Miller, W. W., and Delivoria-Papadopoulos, M., The effect of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-diphosphoglycerate and its in vivo consequences, J. Clin. Invest. 49: 400 - 407 (1970).CrossRefGoogle Scholar
  28. 27.
    Oski, F. A., Marshall, B. E., Cohen, P. J., Sugerman, H. J., and Miller, L. D., Exercise with anemia. The role of the left-shifted or right-shifted oxygen hemoglobin equilibrium curve, Ann. Intern. Med. 74:14 16 (1971).Google Scholar
  29. 28.
    Bellingham, A. J., Detter, J. C., and Lenfant, C., Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J. Clin. Invest. 50: 700706 (1971).Google Scholar
  30. 29.
    Bellingham, A. J., Detter, J. C., and Lenfant, C., The role of hemoglobin affinity for oxygen and red cell 2,3-diphosphoglycerate in the management of diabetic ketoacidosis, Trans. Assoc. Amer. Physicians 83: 113 - 120 (1970).Google Scholar
  31. 30.
    Asakura, T., Sato, Y., Minakami, S., and Yoshikawa, H., pH dependencyGoogle Scholar
  32. Partial Pressures (p o, and Pco) of 2,3-diphosphoglycerate content in red blood cells, Clin. Chim. Acta 14:840841 (1966).Google Scholar
  33. 31.
    Bunn, H. F., May, M. H., Kocholaty, W. F., and Shields, C. E., Hemoglobin function in stored blood, J. Clin. Invest. 48: 311 - 321 (1969).CrossRefGoogle Scholar
  34. 32.
    Duhm, J., Deuticke, B., and Gerlack, E., Complete restoration of oxygen transport function and 2,3-diphosphoglycerate concentration in stored blood, Transfusion 11: 147 - 151 (1971).CrossRefGoogle Scholar
  35. 33.
    Valeri, C. R. and Hirsch, N. M., Restoration in vivo of erythrocyte adenosine triphosphate, 2,3-diphosphoglycerate, potassium ion, and sodium ion concentrations following the transfusion of acid-citrate-dextrose-stored human red blood cells J. Lab. Clin. Med. 73: 722 - 733 (1969).Google Scholar
  36. 34.
    Garby, L, Gerber, G., and De Verdier, C. H., Binding of 2,3-diphosphoglycerate and adenosine triphosphate to human haemoglobin A, Eur. J. Biochem. 10: 110 - 115 (1969).CrossRefGoogle Scholar
  37. 35.
    Benesch, R. E., Benesch, R., and Yu, C. I., The effect of pyridoxal phosphate on the oxygenation of hemoglobin, Fed. Proc. 28: 604 (1969).Google Scholar
  38. 36.
    Tyuma, I. and Shimizu, K., Different response to organic phosphates of human fetal and adult hemoglobins, Arch. Biochem. 129: 404 - 405 (1969).CrossRefGoogle Scholar
  39. 37.
    Duvelleroy, M. A., Buckles, R. G., Rosenkaimer, S., Tung, C., and Laver, M. B., An oxyhemoglobin dissociation analyzer, J. Appi. Physiol. 28: 227 - 233 (1970).Google Scholar
  40. 38.
    Herman, C. M., Rodkey, F. L., Valeri, C. R., and Fortier, N. L., Changes in the oxyhemoglobin dissociation curve and peripheral blood after acute red cell mass depletion and subsequent red cell mass restoration in baboons, Ann. Surg. 174: 734 - 743 (1971).CrossRefGoogle Scholar
  41. 39.
    Laver, M. B., Blood Oa content measured with the pOa electrode: A modification, J. Appi. Physiol. 22: 1017 - 1019 (1967).Google Scholar
  42. 39a.
    Aberman, A., Cavanilles, J. M., Trotter, J., Erbeck, D., Weil, M. H., and Shubin, H., An equation for the oxygen hemoglobin dissociation curve, J. Appi. Physiol. 35: 570 - 571 (1973).Google Scholar
  43. 40.
    Armstrong, B. W., Hurt, H. H., Blide, R., and Workman, J., Relation of pulmonary ventilation to CO2 partial pressure and hydrogen ion concentration in mixed venous and arterial blood, Clin. Res. 8: 252 (1960).Google Scholar
  44. 41.
    Barach, A. L. and Bickerman, H. A., Pulmonary Emphysema, Williams Wilkins, Baltimore, Maryland (1956).Google Scholar
  45. 42.
    Kaltreider, N. L., Fray, W. W., and Hyde, H. V., Effect of age on total pulmonary capacity and its subdivisions, Am. Rev. Tuberc. 37: 662 - 689 (1938).Google Scholar
  46. 43.
    Stewart, C. A., Vital capacity of lungs of children in health and disease, Am. J. Dis. Child. 24: 451 - 496 (1922).Google Scholar
  47. 44.
    Briscoe, W. A., Forster, R. E., and Comroe, J. H., Jr., Alveolar ventilation at very low tidal volumes, J. App. Physiol. 7: 27 - 30 (1954).Google Scholar
  48. 45.
    Tenney, S. M. and Miller, R. M., Respiratory and circulatory actions of salicylate, Am. J. Med. 19: 498 - 508 (1955).CrossRefGoogle Scholar
  49. 46.
    Lewis, B. I., Hyperventilation syndromes; a clinical and physiological observation, Postgrad. Med. J. 21: 259 (1959).Google Scholar
  50. 47.
    Comroe, J. H., Jr., The hyperpnea of muscular exercise, Physiol. Rev. 24: 319339 (1944).Google Scholar
  51. 48.
    Eichenholz, A., Mulhausen, R. O., Anderson, W. E., and MacDonald, F. M., Primary hypocapnia: a cause of metabolic acidosis. J. Appl. Physiol. 17: 283288 (1962).Google Scholar
  52. 49.
    Riley, R. L., Lilienthal, J. L., Jr., Proemmel, D. D., and Franke, R. E., On the determination of the physiologically effective pressures of 02 and CO2 in alveolar air, Am. J. Physiol. 147: 191 - 198 (1946).Google Scholar
  53. 50.
    Mitchell, R. W., Loeschke, H. H., Massion, W. H., and Severinghaus, J. W., Respiratory responses mediated through superficial chemosensitive areas on the medulla, J. Appl. Physiol. 18: 523 - 533 (1963).Google Scholar
  54. 51.
    Katz, R. L., Ngai, S. H., Nahas, G. G., and Wang, S. C., Relationship between acid base balance and the central respiratory mechanisms, Am. J. Physiol. 204: 867 - 872 (1963).Google Scholar
  55. 52.
    Schmidt, C. F. and Comroe, J. H., Jr., Functions of the carotid and aortic bodies, Physiol. Rev. 20: 115 - 157 (1940).Google Scholar
  56. 53.
    Liljestrand, A., Neural control of respiration, Physiol. Rev. 38: 691 - 708 (1958).Google Scholar
  57. 54.
    Riley, R. L., Cournand, A., and Donald, K. W., Analysis of factors affecting partial pressures of 02 and CO2 in gas and blood of lungs, J. Appl. Physiol. 4: 77 - 101 (1951).Google Scholar
  58. 55.
    Rahn, H., A concept of mean alveolar air and the ventilation-blood flow ratio relationships during pulmonary gas exchange, Am. J. Physiol. 158: 21 - 30 (1940).Google Scholar
  59. 55a.
    Goldring, R. M., Cannon, P. J., Heinemann, H. O., and Fishman, A. P., Respiratory adjustments in chronic metabolic acidosis in man, J. Clin. Invest. 47: 188 (1968).CrossRefGoogle Scholar
  60. 56.
    West, J. B., Dollery, C. T., and Hugh Jones, P., The use of radioactive CO2 to measure regional blood flow in the lungs of patients with pulmonary disease, J. Clin. Invest. 40: 1 - 12 (1961).CrossRefGoogle Scholar
  61. 57.
    de Reuk, A. V. S. and O’Connor, M., Eds., Problems of the Pulmonary Circulation, Little, Brown, Boston, Massachusetts (1961).Google Scholar
  62. 58.
    Gordon, B. L. and Kory, R. C., Ed, Clinical Cardiopulmonary Physiology, Grune Stratton, New York (1960).Google Scholar
  63. 59.
    Schwartz, W. B., Hays, R. M., Polak, A., and Haynie, G. D., Effects of chronic hypercapnia on electrolyte and acid-base equilibrium. II. Recovery with special reference to the influence of chloride intake, J. Clin. Invest. 40: 1238 - 1249 (1961).CrossRefGoogle Scholar
  64. 60.
    Dripps, R. D., Jr. and Comroe, J. H., Jr., The clinical significance of carotid and aortic bodies, Am. J. Med. Sci. 208: 681 - 694 (1944).CrossRefGoogle Scholar
  65. 61.
    Wilson, J. E., III, Harrell, W. R., Mullins, C. B., Winga, E. R., Johnson, R. L., Jr., and Pierce, A. K., Hypoxia in pulmonary embolism, Clin. Res. 19, 81 (1969).Google Scholar
  66. 62.
    Druger, G. L., Simmons, D. H., and Levy, S. E., The determination of shunt-like effects and its use in clinical practice, Am. Rev. Resp. Dis. 108: 1261 - 1265 (1973).Google Scholar
  67. 63.
    Valeri, C. R., Zaroulis, C. G., Marchionni, L., and Patti, K. J., A simple method for measuring oxygen content in blood, J. Lab. Clin. Med. 79: 1035-1040 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations