There are three methods generally used for representing acids and bases. Arrhenius defined an acid as a substance that liberates hydrogen ions when dissolved in water.(2) A base, in accordance with his concept, is a substance that liberates hydroxyl ions.


Methyl Orange Carbonic Acid Malonic Acid Sodium Atom Dimethyl Aniline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Selected Reading—Acids and Bases

  1. Kolthoff, I. M. and Bruckenstein,S., Acid-Bases in Analytical Chemistry, Wiley, New York,(1959)Google Scholar
  2. Davenport, H. C.,The ABC of Acid-Base Chemistry,5th rev.ed., Unversity of Chicago Press(1969),Google Scholar
  3. Masoro, E. J.And Sigel, P. D.,Acid-Base Chemistry: Its Physiology and Patho-Physiology, Saunders, Philadelphia, Pennsylvania(1971)Google Scholar
  4. Frisell, W. R.,Acid-Base Chemistry in Medicine, Macmillan, New York(1968)Google Scholar

Selected Reading—Buffers

  1. Bates, Roger. G.,Determination of pH, Theory and Practice,2nd ed.,Wiley New York (1973)Google Scholar
  2. Christensen, H.N.,pH and Dissociation,2nd ed.,Saunders, Philadelphia,Pennsylvania(1964)Google Scholar
  3. Ricci,J.E.,Hydrogen Ion Concentration,Princeton University Prress, Princeton,New Jersey(1952)Google Scholar

Selected Reading—The Blicarbonate System

  1. Peters, J. P. and Van Slyke, D. D., Quantitative Clinical Chemistry, Williams and Wilkins, Baltimore, Maryland (1931), pp. 868 - 1018.Google Scholar
  2. Siggaard-Andersen, O., Acid—Base Status of the Blood, 3rd ed., Williams and Wilkins, Baltimore, Maryland (1974).Google Scholar
  3. Christensen, H. N. Body Fluids and the Acid—Base Balance, Saunders, Philadelphia, (1964).Google Scholar


  1. 1.
    Howell, S. F. and Sumner, J. B., The specific effects of buffers on urease activity, J. Biol. Chem. 104: 619–26 (1934).Google Scholar
  2. 2.
    Arrhenius, S. A., The influence of neutral salts on reaction velocity of the hydrolysis of ethylacetate. Theory of isohydric solutions, Z. Physik. Chem. 1:110–133 (1887); 2: 284–295 (1888).Google Scholar
  3. 3.
    Bagster,L S. and Cooling, G., Electrolysis of hydrogen bromide in liquid sulfur dioxide, J. Chem. Soc. 117:693–696 (1920).CrossRefGoogle Scholar
  4. 4.
    Brönsted, J N., The conception of acids and bases, Rec. Tray. Chim. 42 718–728 (1923).CrossRefGoogle Scholar
  5. 5.
    Brönsted, J. N., Acid and base catalysis, Chem. Rev. 5:231–338 (1928).Google Scholar
  6. 6.
    Clark, W. M., The Determination of Hydrogen Ions, Williams and Wilkins, Baltimore, Maryland (1920), p. 19.Google Scholar
  7. 7.
    Sörensen, S. P. L., On the measurement and significance of hydrogen ion concentration in enzymatic processes, Biochem. Z. 21: 131–200 (1909).Google Scholar
  8. 8.
    Guldberg, C. M. and Waage, P., Etudes sur les affinités chimiques, Brogger and Christie, Christiana (1867).Google Scholar
  9. 9.
    Weast, R. C. and Selby, S. M., eds., Handbook of Chemistry and Physics,46th Ed., Chemical Rubber Publ. Company, Cleveland, Ohio (1965–66), p. D-78.Google Scholar
  10. 10.
    Van Slyke, D. D., On the measurement of buffer values and on the relation.ship of buffer values to the dissociation constant of the buffer and the con- centration and reaction of the buffer solution, J. Biol. Chem. 52:525–570 (1922).Google Scholar
  11. 11.
    Van’t Hoff, J. H., The role of osmotic pressure in the analogy between solutions and gases, Z. Physik. Chem. 1, 481–508 (1887).Google Scholar
  12. 12.
    Cullity,B. D., Elements of X-ray Diffraction, Addison-Wesley, Reading, Mass. (1956), p. 47.Google Scholar
  13. 13.
    Kolthoff, I. M.et al, Volumetric Analysis,Vol. I (1942), Vol. II (1947), Vol.III (1957), Wiley, New York.Google Scholar
  14. 14.
    Hastings, A. B. and Sendroy, J., Jr., The value of pK’ in the HendersonHasselbalch equation for blood serum, J. Biol. Chem. 79:183–192 (1928).Google Scholar
  15. 15.
    Rispens, P., Dellebarre, C. W., Eleveld, D., Helder, W., and Zijlstra, W. G., The apparent first dissociation constant of carbonic acid in plasma between 16 and 42.5°C, Clin. Chim. Acta, 22:627–637 (1968).Google Scholar
  16. 16.
    Severinghaus, J W., Stupfel, M., and Bradley, A. F., Variations of serum carbonic acid pK’ with pH and temperature, J. Appl. Physiol. 9:197–200 (1956).Google Scholar
  17. 17.
    Siggaard—Andersen, O., The first dissociation exponent of carbonic acid as a function of pH, Scand. J. Clin. Lab. Invest. 14:587–597 (1962).Google Scholar
  18. 18.
    Henderson, L. J., The theory of neutrality regulation in the animal organism, Am. J. Physiol. 21:427 (1908).Google Scholar
  19. 19.
    Hasselbalch, K. A. The calculation of blood pH from free and bound CO, as a function of pH, Biochem. Z. 78:112 (1916), 78:251 (1917).Google Scholar
  20. 20.
    Sackur-Breslau, O. and Stern, O., The osmotic pressure of concentrated solutions of carbon dioxide, Z. Elektrochem 18:641–644 (1912).Google Scholar
  21. 21.
    Van Slyke D. D. and Sendroy, J., Jr Studies of gas and electrolyte equilibrium in blood; line charts for graphic calculations by the Henderson—Hasselbalch equation, and for calculating plasma carbon dioxide content from whole blood content, J. Biol. Chem 79:781–798 (1928).Google Scholar
  22. 22.
    Van Slyke, D. D., Sendroy, J. Jr., Hastings, A. B., and Neill, J. M., Studies of gas and electrolyte equilibria in blood. X. The solubility of carbon dioxide at 38°C in water, salt solution, serum and blood cells, J. Biol. Chem. 78:765–799 (1928).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations