In Figure 4.2 the central nervous system is shown as controlling blood flow to the kidney and thus influencing kidney function. In man, impaired sympathetic nerve function leads to an exaggerated diuretic response to saline loading and impairment of sodium conservation in response to sodium restriction. Anesthesia increases saline diuresis.(1) The antidiuretic hormone (vasopressin) from the posterior pituitary stimulates reabsorption of water in the distal tubule. Thus, both directly and through humoral agents, the central nervous system modulates kidney function.


Glomerular Filtration Rate Nephrotic Syndrome Osmotic Pressure Proximal Tubule Renal Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading-Kidney in Water and Electrolyte Balance

  1. Rouiller, C. and Muller, A. F., Eds., The Kidney. Vol. III, Morphology, Biochemistry, Physiology, Academic Press, New York (1971).Google Scholar
  2. Wesson, L. G., Jr., Physiology of the Human Kidney, Grune and Stratton, New York (1969).Google Scholar
  3. Thurau, K., Kidney and Urinary Tract Physiology, University Park Press, Baltimore, Maryland (1973).Google Scholar
  4. Fischer, J. W., Ed., Kidney Hormones, Academic Press, New York (1970). Becker, E., Structural Basis of Renal Disease, Hoeber, New York (1968).Google Scholar
  5. Pitts, R. F., Physiology of the Kidney and Body Fluids,2nd ed., Yearbook, ChicagoGoogle Scholar
  6. Illinois (1968).Google Scholar
  7. Deane, N., Kidney and Electrolytes. Foundations of Clinical Diagnosis and Physiologic Therapy, Prentice Hall, New York (1966).Google Scholar
  8. DeWardener, H. E., Kidney, 3rd ed., Little, Brown, and Co., Boston, Massachusetts (1968).Google Scholar
  9. Lippman, R. W., Urine and the Urinary Sediment, 2nd ed., C. C. Thomas, Springfield, Illinois (1967).Google Scholar
  10. Smith, H. W., Kidney, Structure and Functions in Health and Disease, Oxford Univ. Press, New York (1951).Google Scholar
  11. Reubi, F. C., Clearance Tests in Clinical Medicine, C. C. Thomas, Springfield, Illinois (1963).Google Scholar
  12. Manuel, Y., Revillard, J. P., and Vetuel, H. Proteins in Normal and Pathological Urine, University Park Press, Baltimore, Maryland (1970).Google Scholar
  13. Trueta, J. Studies of the Renal Circulation, C. C. Thomas, Springfield, Illinois (1947).Google Scholar


  1. 1.
    Gilmore, J. P. and Michaelis, L. L., Influence of anesthesia on renal responses of the foxhound to intravascular volume expansion, Am. J. Physiol 216: 13671369 (1969).Google Scholar
  2. 2.
    Griffith, L. D., Bulger, R. E., and Trump, B. F., The ultrastructure of the functioning kidney, Lab. Invest 16: 220–246 (1967).Google Scholar
  3. 3.
    Vimtrup, B. J., On the number, shape, structure, and surface area of the glomeruli in the kidneys of man and mammals, Am. J. Anat 41: 123–151 (1928).CrossRefGoogle Scholar
  4. 4.
    Hollinshead, W. H., Renovascular anatomy, Postgrad. Med 40: 241–246 (1966).Google Scholar
  5. 5.
    Jacobsen, N. O., Jorgensen, F., and Thomsen, A. C., An electron microscopic study of small arteries and arterioles in the normal human kidney, Nephron 3: 17–39 (1966).CrossRefGoogle Scholar
  6. 6.
    Jorgensen, F., The ultrastructure of the normal human glomerulus, Danish Med. Bull 14: 281–287 (1967).Google Scholar
  7. 7.
    Boyarsky, S. and Labay, P., Stimulation of ureteral peristalsis through the renal nerves, Invest. Urol 5: 200–202 (1967).Google Scholar
  8. 8.
    Thurau, K., Renal hemodynamics, Am. J. Med 36: 698–719 (1964).CrossRefGoogle Scholar
  9. 9.
    Siegelman, S. S. and Goldman, A. G., Trueta phenomenon: angiographic documentation in man, Radiology 90: 1084–1089 (1968).Google Scholar
  10. 10.
    Lilienfield, L. S., Rose, J. C., and Porfido, F. A., Evidence for a red cell shunting mechanism in the kidney, Circ. Res 5: 64–68 (1957).CrossRefGoogle Scholar
  11. 11.
    Brunner, F. P., Rector, F. C., and Selden, D. W., Mechanism of glomerulo-tubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped flow microperfusion, J. Clin. Invest 45: 603–611 (1966).CrossRefGoogle Scholar
  12. 12.
    Deen, W. M., Robertson, C. R., and Brenner, B. M., Glomerular ultrafiltration, Fed. Proc 33: 14–20 (1974).Google Scholar
  13. 13.
    Robertson, C. R., Deen, W. M., Troy, J. L., and Brenner, B. M., Dynamics of glomerular ultrafiltration in the rat. III. Hemodynamics and autoregulation, Am. J. Physiol 223: 1191–1200 (1972).Google Scholar
  14. 14.
    Renkin, E. M. and Gilmore, J. P., Glomerular filtration, in Handbook of Physiology. Renal Physiology, Am. Physiol. Soc., Washington, D.C. (1973), Chapter 9, pp. 185–248.Google Scholar
  15. 15.
    Moffat, D. B., The fine structure of the blood vessels of the renal medulla with particular reference to the control of the medullary circulation, J. Ultrastruct. Res 19: 532–545 (1967).CrossRefGoogle Scholar
  16. 16.
    Lewy, J. E. and Windhager, E., Peritubular control of proximal tubular fluid reabsorption in the rat kidney, Am. J. Clin. Pathol 214: 943–954 (1968).Google Scholar
  17. 17.
    Bossert, W. H. and Schwartz, W. B., Relation of pressure and flow to control of sodium reabsorption in the proximal tubule, Am. J. Physiol 213: 793–802 (1967).Google Scholar
  18. 18.
    Gottschalk, C. W., Renal tubular function lessons from micropuncture, in The Harvey Lectures, 1962–3, Academic Press, New York (1963), pp. 99–124.Google Scholar
  19. 19.
    Walker, A. M., Bott, P. A., Oliver, J., and MacDowell, M., The collection and analysis of fluid from single nephrons of the mammalian kidney, Am. J. Physiol 134: 580–595 (1941).Google Scholar
  20. 20.
    Morgan, T. and Berliner, R. W., Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium, Am. J. Physiol 15: 108115 (1968).Google Scholar
  21. 21.
    Wirz, H., The location of the anti-diuretic action in the mammalian kidney, in The Neurohypophysis, Heller, H., ed., Butterworths, London (1957).Google Scholar
  22. 22.
    Keeler, R., Effect of hypothalamic lesions on renal excretion of sodium, Am. J. Physiol 197: 847–849 (1959).Google Scholar
  23. 23.
    Gilman, A., and Brazeau, P., The role of the kidney in the regulation of acid-base metabolism, Am. J. Med 15: 765–70 (1953).CrossRefGoogle Scholar
  24. 24.
    Gottschalk, C. W., Lassiter, W. E., and Mylle, M., Localization of urine acidification in the mammalian kidney, Am. J. Physiol 198: 581–585 (1960).Google Scholar
  25. 25.
    Wrong, O., and Davies, H. E. F., The excretion of acid in renal disease, Q. J. Med 28: 259–313 (1959).Google Scholar
  26. 26.
    Barclay, J. A., Cooke, W. T., Kenney, R. A., and Nutt, M. E., The effect ofGoogle Scholar
  27. water diuresis and exercise on the volume and composition of urine, Am. J. Physiol 148: 327–337 (1947).Google Scholar
  28. 27.
    Berliner, R. W., Kennedy, T. J., Jr., and Orloff, J., Relationship between acidification of the urine and potassium metabolism: effect of carbonic anhydrase inhibition on potassium excretion, Am. J. Med 11: 274–282 (1951).CrossRefGoogle Scholar
  29. 28.
    Smith, H. W., Finkelstein, N., Aliminosa, L., Crawford, B., and Graber, M., The renal clearance of substituted hippuric acid derivatives and other aromatic acids in dog and man, J. Clin. Invest 24: 388–404 (1945).CrossRefGoogle Scholar
  30. 29.
    Miles, B. E., Paxton, A., and deWardener, H. E., Maximum urine concentration, B. Med. J 2: 901–905 (1954).CrossRefGoogle Scholar
  31. 30.
    Ohta, M., Jarrett, R. J., and Field, F. B., Measurement of ATP in tissues with the use of C14O2 production from glucose-1-C14, J. Lab. Clin. Med 67: 1013–1024 (1966).Google Scholar
  32. 31.
    Forster, R. P. and Taggart, J. V., The use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport, J. Cell. Comp. Physiol 36: 251–270 (1950).CrossRefGoogle Scholar
  33. 32.
    Hoffman, J. F., Ed., Cellular Functions of Membrane Transport, Prentice Hall, Englewood Cliffs, New Jersey (1964).Google Scholar
  34. 33.
    Edelman, I. S., Transport through biological membranes, Ann. Rev. Physiol 23: 37–70 (1961).CrossRefGoogle Scholar
  35. 34.
    Richardson, S. H., An ion translocase system from rabbit intestinal mucosa. Preparation and properties of the (Na +-K+) activated ATPase, Biochim. Biophys. Acta 150: 572–577 (1968).CrossRefGoogle Scholar
  36. 35.
    Landon, E. J., Jazab, N., and Forte, L., Aldosterone and sodium-potassium dependent ATPase activity of rat kidney membranes, Am. J. Physiol. 211: 1050-1056 (1966).Google Scholar
  37. 36.
    Spitzer, A. and Windhager, E. E., Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption, Am. J. Physiol. 218:1188-1193 (1970).Google Scholar
  38. 37.
    Kokko, J. P., Membrane characteristics governing salt and water transport in the loop of Henle, Fed. Proc 33: 25–30 (1974).Google Scholar
  39. 38.
    de Rouffignac, C. and Morel, F., The permeability to sodium of different segments of the nephron studied in the rat with the aid of intratubular microinjections of 22Na as NaC1, Nephron 4: 92–118 (1967).CrossRefGoogle Scholar
  40. 39.
    Bulger, R. E., Tisher, C. C., Myers, C. H., and Trump, F. F., Human renal ultrastructure. II. The thin limb of Henle’s loop and the interstitium in healthy individuals, Lab. Invest 16: 124–141 (1967).Google Scholar
  41. 40.
    Marsh, D. J., Solute and water flows in thin limbs of Henle’s loop in the hamster kidney, Am. J. Physiol 218: 824–831 (1970).Google Scholar
  42. 41.
    Lever, A. F., The vasa recta and countercurrent multiplication, Acta Med. Scand 178 (Suppl. 434): 1–43 (1966).Google Scholar
  43. Lever, A. F. and Kriz, W., Countercurrent exchange between the vasa recta and the loop of Henle, Lancet 1: 1057–1060 (1966).Google Scholar
  44. 43.
    Jamison, R. L., Bennett, C. M., and Berliner, R. W., Countercurrent multiplication by the thin loops of Henle, Am. J. Physiol 212: 357–366 (1967).Google Scholar
  45. 44.
    Rocha, A. S. and Kokko, J. P., Sodium chloride and water transport in theGoogle Scholar
  46. medullary thick ascending limb of Henle: Evidence for active chloride transport, J. Clin. Invest 52: 612–623 (1973).CrossRefGoogle Scholar
  47. 45.
    Burg, M. B. and Green, N., Function of the thick ascending limb of Henle’s loop, Am. J. Physiol 224: 659–668 (1973).Google Scholar
  48. 46.
    Ullrich, K. J., Function of the collecting ducts, Circulation 21: 869–874 (1960).CrossRefGoogle Scholar
  49. 47.
    Fourman, J. and Kennedy, G. C., An effect of antidiuretic hormone on the flow of blood through the vasa recta of the rat kidney, J. Endocrinol 35: 173–176 (1966).CrossRefGoogle Scholar
  50. 48.
    Carone, F. A., Everett, B. A., Blondeel, N. J., and Stolarczyk, J., Renal localization of albumin and its function in the concentrating mechanism, Am. J. Physiol 212: 387–393 (1967).Google Scholar
  51. 49.
    Slotkoff, L. M. and Lilienfield, L. S., Extravascular renal albumin, Am. J. Physiol 212: 400–406 (1967).Google Scholar
  52. 50.
    Wilde, W. S. and Vorburger, C., Albumin multiplier in kidney vasa recta analyzed by microspectrophotometry of T-1824, Am. J. Physiol 213: 1233–1243 (1967).Google Scholar
  53. 51.
    Smith, H. W., The fate of sodium and water in the renal tubules, Bull. N.Y. Acad. Med 35: 293–316 (1959).Google Scholar
  54. 52.
    Marsh, D. J. and Solomon, S., Relationship of electrical potential differences to net ion fluxes in rat proximal tubules, Nature 201: 714–715 (1964).CrossRefGoogle Scholar
  55. 53.
    Wood, J. E. and Ahlquist, R. P., Eds., Symposium on Angiotensin, The American Heart Association, New York (1962).Google Scholar
  56. 54.
    Belleau, L. J. and Earley, L. E., Autoregulation of renal blood flow in the presence of angiotensin infusion, Am. J. Physiol 213: 1590–1595 (1967).Google Scholar
  57. 55.
    Cook, W. F., The detection of renin in juxtaglomerular cells, J. Physiol. (London) 194: 73–74 (1968).Google Scholar
  58. 56.
    Skeggs, L. T., Lentz, K. E., Gould, A. B., Hochstrasser, H., and Kahn, J. R., Biochemistry and kinetics of the renin-angiotensin system, Fed. Proc 26: 42–47 (1967).Google Scholar
  59. 57.
    Coon, J. W., Aldosteronism and hypertension, Arch. Intern. Med 107: 813–828 (1961).CrossRefGoogle Scholar
  60. 58.
    Cook, W. F. and Pickering, G. W., The location of renin in the kidney, Biochem. Pharmacol 9: 165–171 (1962).CrossRefGoogle Scholar
  61. 59.
    Goormaghtigh, N., Existence of an endocrine gland in the media of the renal arterioles, Proc. Soc. Exp. Biol. Med 42: 688 (1939).Google Scholar
  62. 60.
    Latta, H. and Maunsbach, A. B., The juxtaglomerular apparatus as studied electron microscopically, J. Ultrastruct. Res 6: 547 (1962).CrossRefGoogle Scholar
  63. 61.
    Berkowitz, H. D., Miller, L. D., and Itskowitz, H. D., Renal function and the renin-angiotensin system in the isolated perfused kidney, Am. J. Physiol 213: 928–934 (1967).Google Scholar
  64. 62.
    Britton, K. E., Renin and renal autoregulation, Lancet 2: 329–333 (1968).CrossRefGoogle Scholar
  65. 63.
    Wolff, H. P., Aldosterone in clinical medicine, Acta Endocrin. Suppl 124: 65–86 (1967).Google Scholar
  66. 64.
    Doyle, A. E., Jerums, G., Coghlan, J. P., and Scoggins, B., Renin, aldosterone, and sodium balance in hypertension, Bull. Postgrad. Comm. Med. Univ. (Sydney) 26: 102–110 (1971).Google Scholar
  67. 65.
    Laragh, J. H., Angers, M., Kelly, W. G., and Lieberman, S., Hypotensive agents and pressor substances, effect of epinephrine, norepinephrine, angiotensin II, and others on the secretory rate of aldosterone in man, J. Am. Med. Assoc 174: 234–240 (1960).CrossRefGoogle Scholar
  68. 66.
    Slater, J. D. H., Barbour, B. H., Henderson, H. H., Casper, A. G. T., and Bartter, F. C., Influence of the pituitary and the renin-angiotensin system on the secretion of aldosterone, cortisol, and corticosterone, J. Clin. Invest 42: 1504–1520 (1963).CrossRefGoogle Scholar
  69. 67.
    Gross, F., The regulation of aldosterone secretion by the reninangiotensin system under various conditions, Acta Endocrinol. Suppl 124: 41–64 (1967).Google Scholar
  70. 68.
    Koch, K. M., Aynedjian, H. S., and Bank, N., Effect of acute hypertension on sodium reabsorption by the proximal tubule, J. Clin. Invest 47: 1696–1709 (1968).CrossRefGoogle Scholar
  71. 69.
    Tobian, L., Interrelationships of electrolytes, juxtaglomerular cells, and hypertension, Physiol. Rev. b: 280–312 (1960).Google Scholar
  72. 70.
    Biron, P., Koiw, E., Nowaczynski, W., Brouillet, J., and Genest, J., The effects of intravenous infusions of valine-5-angiotensin II and other pressor agents on urinary electrolytes and corticosteroids, including aldosterone, J. Clin. Invest 40: 338–47 (1960).CrossRefGoogle Scholar
  73. 71.
    Frazier, H. S., Renal regulation of sodium balance, New Eng. J. Med 279: 868–875 (1968).CrossRefGoogle Scholar
  74. 72.
    Mills, J. H., The cardiovascular system and renal control of sodium excretion, Can. J. Physiol. Pharmacol 46: 297–303 (1968).CrossRefGoogle Scholar
  75. 73.
    Peart, W. S., Hypertension and the kidney. III. Experimental basis of renal hypertension, Brit. Med. J. 2:1359 (1959); Br. Med. J 2 (Suppl.): 1429 (1959).Google Scholar
  76. 74.
    Boyd, G. W., Adamson, A. R., Fitz, A. E., and Peart, W. S., Radioimmunoassay determination of plasma-renin activity, Lancet 1: 213–218 (1969).CrossRefGoogle Scholar
  77. 75.
    Goldblatt, H., The Renal Origin of Hypertension, C. C. Thomas, Springfield, Illinois (1948).Google Scholar
  78. 76.
    Ellis, A., Natural history of Bright’s disease, II and III. Lancet 1942 (January 10): 34–36; 1942 (January 17): 72–76.Google Scholar
  79. 77.
    Eck, R. V. and Dayhoff, M. O., Atlas of Protein Sequence and Structure, National Biomed. Res. Found., Silverspring, Maryland (1966), p. 117.Google Scholar
  80. 78.
    Malnic, G., Klose, R. M., and Giebisch, G., Micropuncture study of renal potassium excretion in the rat, Am. J. Physiol 206: 674686 (1964).Google Scholar
  81. 79.
    Berliner, R. W., Renal mechanisms for potassium excretion, in The Harvey Lectures, Series 55 (1960), pp. 141–171.Google Scholar
  82. 80.
    Dickerman, H. W. and Walker, W. G., Effect of cationic amino acid infusion on potassium metabolism in vivo, Am. J. Physiol 206: 403–408 (1964).Google Scholar
  83. 81.
    de Rouffignac, C. and Morel, F., Micropuncture study of water, electrolytes, and urea movements along the loops of Henle in Psammomys, J. Clin. Invest 48: 474–486 (1969).CrossRefGoogle Scholar
  84. 82.
    Duarte, C. G., Chomety, F., and Giebisch, G., Effects of amiloride, oubain and furosemide upon distal tubules function in the rat, Clin. Res 17: 428 (1969).Google Scholar
  85. 83.
    Wilczewski, T. W., Olson, A. K., and Carrasquer, G., Effect of amiloride, furosemide, and ethacrynic acid on Na transport in the rat kidney Soc. Exp. Biol. Med. 145 :1301–1305 (1974) Google Scholar
  86. 84.
    Ramsay, A. G., Stop-flow analysis of the influence of pcoa on renal tubular transport of K and H, Am. J. Physiol 206: 1355–1360 (1964).Google Scholar
  87. 85.
    Wiederholt, M. and Wiederholt, B., The influence of dexamethason on the water and electrolyte excretion in adrenalectomized rats, Arch. Ges. Physiol 302: 57–78 (1968).CrossRefGoogle Scholar
  88. 86.
    Rector, F. C., Jr., Bloomer, H. A., and Seldin, D. W., Effect of potassium deficiency on the reabsorption of bicarbonate in the proximal tubule of the rat kidney J. Clin. Invest. 43 :1976–1982 (1964) Google Scholar
  89. 86a.
    Rodriguez-Soriano, J. and Edelmann, C. M., Jr., Renal tubular acidosis, Ann. Rev. Med 20: 363–382 (1969).CrossRefGoogle Scholar
  90. 86b.
    Lightwood, R. and Butler, N., Decline in primary infantile renal acidosis. Aetological implications, Br. Med. J. 1:855–857 (1963).Google Scholar
  91. 87.
    Giebisch, G. and Malic, G., in Symposium of Renal Transport and Metabolism, Springer-Verlag, New York (1969), pp. 123–138.Google Scholar
  92. 88.
    Rector, J. C., Jr., Micropuncture studies on the mechanism of urinary acidification, in Renal Metabolism and Epidemiology of Some Renal Diseases, Maple Press, York, Pennsylvania (1964), pp. 9–31.Google Scholar
  93. 89.
    Hayes, C. P., Jr., Owen, E. E., and Robinson, R. R., Renal ammonia excretion during acetazolamide or sodium bicarbonate administration Am. J. Physiol. 210 :744–750 (1966) Google Scholar
  94. 90.
    Pitts, R. F. and Stone, W. J., Renal metabolism and excretion of ammonia, in Proc. 3rd Intern. Cong. Nephrol.Washington, D.C. (1967), Vol. 1, pp. 123–135 Google Scholar
  95. 91.
    Pollak, V. E., Mattenheimer, H., DeBruin, H., and Weinman, K. J., Experimental metabolic acidosis: the enzymatic basis of ammonia production by the dog kidney J. Clin. Invest. 44:169–181 (1965) Google Scholar
  96. 92.
    Hills, A. G. and Reid, E. L., Renal ammonia balance. A kinetic treatment, Nephron 3: 221–256 (1966).CrossRefGoogle Scholar
  97. 93.
    Pitts, R. F., Renal production and excretion of ammonia, Am. J. Med 36: 720–742 (1964).CrossRefGoogle Scholar
  98. 94.
    Rector, F. C., Carter, N. W., and Seldin, D. W., The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney J. Clin. Invest. 44:278–290 (1965).Google Scholar
  99. 95.
    Maren, T. H., Carbonic anhydrase: chemistry physiology and inhibition, Physiol. Rev 47: 598–781 (1967).Google Scholar
  100. 96.
    Van Slyke, D. D., Phillips, R. A., Hamilton, P. B., Archibald, R. M., Futcher, P. H., and Hiller, A., Glutamine as a source material of urinary ammonia, J. Biol. Chem 150: 481–482 (1945).Google Scholar
  101. 97.
    Reid, E. L. and Hills, A. G., Diffusion of carbon dioxide out of the distal nephron in man during antidiuresis, Clin. Sci. 28: 15–28 (1965).Google Scholar
  102. 98.
    Stone, W. J., Balagura, S., and Pitts, R. F., Diffusion equilibrium for ammonia in the kidney of the acidotic dog, J. Clin. Invest 46: 1603–1608 (1967).CrossRefGoogle Scholar
  103. 98a.
    Levitt, M. F., Goldstein, M. H., Lenz, P. R., and Wedeen, R., Mercurial diuretics, Ann. N.Y. Acad. Sci 134: 375–387 (1966).CrossRefGoogle Scholar
  104. 98b.
    Dirks, J. H., Cirksena, W. J., and Berliner, R. W., Micropuncture study of the effect of various diuretics on sodium reabsorption by the proximal tubules of the dog, J. Clin. Invest 45: 1875–1885 (1966).CrossRefGoogle Scholar
  105. 98c.
    Laragh, J. H., Mode of action and use of chlorothiazide and related compounds, Circulation 26: 121–132 (1962).CrossRefGoogle Scholar
  106. 98d.
    Liddle, G. W., Aldosterone antagonists and triamterene, Ann. N.Y. Acad. Sci 139: 466–470 (1966).CrossRefGoogle Scholar
  107. 98e.
    Muth, R., Diuretic properties of furosemide in renal disease, Ann. Intern. Med 69: 249–261 (1968).Google Scholar
  108. 99.
    Natelson, S. and Pochopien, D. J., Novel approach to the design of a pediatric microanalytical laboratory, Microchem. J 18: 457–485 (1973).CrossRefGoogle Scholar
  109. 100.
    Kaplan, A., Chaney, A. L., Lynch, R. L., and Meites, S., Urea nitrogen and urinary ammonia, in Standard Methods of Clinical Chemistry, Vol. 5, Academic Press (1965), pp. 245–256; also see Chaney, A. L. and Marbach, E. P., Clin. Chem. 8:130–132 (1962).Google Scholar
  110. 101.
    Natelson, S., Crawford, W. L., and Munsey, F. A., in Immature Infant, Illinois Dept. Public Health, Division Prey. Med. (1952), p. 73.Google Scholar
  111. 102.
    Rapoport, A. and Husdan, H., Endogenous creatinine clearance and serum creatinine in clinical assessment of kidney function, Can. Med. Assoc. J 99: 149156 (1968).Google Scholar
  112. 103.
    Sasaki, M., Takahara, K., and Natelson, S., Urinary guanidinoacetate/ guanidinosuccinate ratio as indicator of kidney dysfunction, Clin. Chem 19: 315–321 (1973).Google Scholar
  113. 104.
    Bonas, J. E., Cohen, B. D., and Natelson, S., Separation and estimation of certain guanidino compounds. Application to human urine, Microchem. J 7: 63–77 (1963).CrossRefGoogle Scholar
  114. 105.
    Natelson, S., Stein, J., and Bonas, J. E., Improvements in the method of separation of guanidino organic acids by column chromatography. Isolation and identification of guanidinosuccinic acid from human urine, Microchem. J 8: 371 (1964).CrossRefGoogle Scholar
  115. 106.
    Stein, I. M., Cohen, B. D., and Kornhauser, R. S., Guanidino succinic acid in renal failure, experimental azotemia and inborn errors of the urea cycle, New Eng. J. Med 280: 926–930 (1969).CrossRefGoogle Scholar
  116. 107.
    Grof, J., Tanko, A., and Menyhart, J., New Method for measurement of guanidino succinic acid in serum and urine, Clin. Chem 20: 574–575 (1974).Google Scholar
  117. 107a.
    Tamm, I. and Horsfall, F. L., A mucoprotein derived from human urine which reacts with influenza, mumps and Newcastle disease viruses, J. Exp. Med 95: 71–79 (1952).CrossRefGoogle Scholar
  118. 107b.
    Boyce, W. H., King, J. S., and Fielden, M. L., Total nondialyzable solids (TNDS) in human urine. IX. Immunochemical studies of the R-1 “uromucoid” fraction, J. Clin. Invest 40: 1453–1465 (1961).CrossRefGoogle Scholar
  119. 107c.
    Maxfield, M., Fractionation of the urinary mucoproteins of Tamm and Horsfall, Arch. Biochem. Biophys 89: 281–288 (1960).CrossRefGoogle Scholar
  120. 108.
    Chisholm, G. D., Evans, K., and Kulatilake, A. E., The quantitation of renal blood flow using I-125 hippuran. An experimental study in the perfusion of the isolated canine kidney, Br. J. Urol 39: 50–57 (1967).CrossRefGoogle Scholar
  121. 109.
    Bergstrom, J., Bucht, H., and Josephson, B., Determination of the renal blood flow in man by means of radioactive tracers. Diodrast and renal vein catheterization, Scand. J. Clin. Lab. Invest 11: 71–81 (1959).CrossRefGoogle Scholar
  122. 110.
    Alpert, L. K., A rapid method for the determination of diodrast iodine in blood and urine, Bull. Johns Hopkins Hosp 68: 522–537 (1941).Google Scholar
  123. 111.
    Chasis, H., Redich, J., Goldring, W., Ranges, H. A., and Smith, H. W., Use of sodium p-amino hippurate for functional evaluation of human kidney. J. Clin. Invest 24: 583–588 (1945).CrossRefGoogle Scholar
  124. 112.
    Foa, P. P. and Foa, N. L., Simple method for determining effective renal blood flow and tubular excretory mass in man, Proc. Soc. Exp. Biol 51: 375–378 (1942).Google Scholar
  125. 113.
    Calcagno, P. L. and Rubin, M. F., Renal extractions of p-aminohippurate in infants and children, J. Clin. Invest 42: 1632–1639 (1963).CrossRefGoogle Scholar
  126. 114.
    Tompsett, S. L., The determination of aminohippuric acid and aminobenzoic acids in urine, Clin. Chim. Acta 8: 308–311 (1963).CrossRefGoogle Scholar
  127. 115.
    Natelson, S., in Techniques of Clinical Chemistry, 3rd ed., C. C. Thomas, Springfield, Illinois (1971), pp. 679–683.Google Scholar
  128. Murphy, G. P., Palma, L. D., Moore, R. H., et al,Rapid inulin clearance. Method for clinical use, N.Y. State J. Med 69:1735–1738(1969).Google Scholar
  129. 117.
    Schreiner, G. E., Determination of inulin by means of resorcinol, Proc. Soc. Exp. Biol. Med 74: 117–120 (1950).Google Scholar
  130. 118.
    Berger, E. Y., Farber, S. J., and Earle, D. P., Jr., Renal excretion of mannitol, Proc. Soc. Exp. Biol 66: 62–66 (1947).Google Scholar
  131. 119.
    Kennedy, T. J., Jr. and Kleh, J., The relationship between the clearance and the plasma concentration of inulin in normal man, J . Clin. Invest. 32: 90–95 (1953).CrossRefGoogle Scholar
  132. 120.
    Jeremy, D. and McIver, M., Inulin, b7Co-labelled vitamin B12 and endogenous creatinine clearance in the measurement of glomerular filtration rate in man, Aust. Ann. Med 15: 346–351 (1966).Google Scholar
  133. 121.
    Doolan, P. D., Alpen, E. L., and Theil, G. B., A clinical appraisal of the plasma concentration and endogenous clearance of creatinine, Am. J. Med 32: 65–79 (1962).CrossRefGoogle Scholar
  134. 122.
    Tobias, G. J., McLaughlin, R. R., Jr., and Hopper, J., Jr., Endogenous creatinine clearance, New Eng. J. Med 266: 317–323 (1962).CrossRefGoogle Scholar
  135. 123.
    Vere, D. W. and Walduck, A., Endogenous creatinine clearance and glomerular filtration rate, Lancet 2: 1299 (1964).CrossRefGoogle Scholar
  136. 124.
    Tobias, G. J., McLaughlin, R. F., Jr., and Hopper, J., Jr., Endogenous creatinine clearance, a valuable clinical test of glomerular filtration and a prognostic guide in chronic renal disease, New Eng. J. Med 266: 317 (1962).CrossRefGoogle Scholar
  137. 125.
    Kim, K. E., Onesti, G., Ramirez, O., et al., Creatinine clearance reappraisal, Brit. Med. J 4: 11–14 (1969).CrossRefGoogle Scholar
  138. 126.
    Moller, O. E., McIntosh, J. F., and Van Slyke, D. D., Studies of urea excretion. II. Relationship between urine volume and the rate of urea excretion by normal adults, J. Clin. Invest 6: 427 (1928).CrossRefGoogle Scholar
  139. 127.
    Dean, R. F. A. and McCance, R. A., Inulin, diodone, creatinine and urea clearances in newborn infants, J. Physiol 106: 431–439 (1947).Google Scholar
  140. 128.
    Findley, T. and White, H. L., Measurement of diodrast and inulin clearances in man after subcutaneous administration, Proc. Soc. Exp. Biol. Med 45: 623–625 (1950).Google Scholar
  141. 129.
    Landowne, M. and Alving, A. S., Method of determining specific renal functions of glomerular filtration maximal tubular excretion (or reabsorption) and “effective blood flow” using a single injection of a single substance, J. Lab. Clin. Med 32: 931–942 (1947).Google Scholar
  142. 130.
    Letteri, J. M. and Wesson, L. G., Jr., Glucose titration curves as an estimate of intrarenal distribution of glomerular filtrate in patients with congestive heart failure, J. Lab. Clin. Med 65: 387–405 (1965).Google Scholar
  143. 131.
    Tomisek, A. J. and Natelson, S., Fluorometric assay of ultramicro quantities of glucose with Somogyi filtrate and hexokinase, Microchem. J 19: 54–62 (1974).CrossRefGoogle Scholar
  144. 132.
    Mitchell, A. D., Owens, R., and Valk, W L, Clinical value of urea clearance and phenolsulfonephthalein test, J. Urol 71: 230–236 (1954).Google Scholar
  145. 133.
    Dunea, G. and Freedman, P., Phenolsulfonphthalein excretion test, J. Am. Med. Assoc. 204 621–622 (1968) Google Scholar
  146. 134.
    Gault, M. H. and Dossetor, J. B., The place of phenolsulfonphthalein (PSP) in the measurement of renal function, Am. Heart. J 75: 723–727 (1968).CrossRefGoogle Scholar
  147. 135.
    Bjerre-Christensen, K., The pitressin test of renal concentrating capacity. A comparative evaluation of the Addis-Shevsky and Pitressin test, Acta Med. Scand 142: 215–230 (1952).CrossRefGoogle Scholar
  148. 136.
    Jacobson, M. H.,Levy, S. E., Kaufman, R. M., Gallinek, W. E., and Donnelly, O. W., Urine osmolality. A definite test of renal function, Arch. Intern. Med. 110 :83–89 (1962) Google Scholar
  149. 137.
    Earle, D. P. and Seegal, D., Eds., Symposium of glomerulonephritis, J. Chronic Dis. 5:1–172 (1957).Google Scholar
  150. 138.
    Fischel, E. E. and Gajdusek, D.C., Serum complement in acute glomerulonephritis and other renal diseases, Am. J. Med 12: 190–196 (1952).CrossRefGoogle Scholar
  151. 139.
    Tidstrom, B., Urinary protein in glomerulonephritis and pyelonephritis (electrophoretic assay), Acta Med. Scand 174: 385–391 (1963).Google Scholar
  152. 140.
    Dodge, W. F., Spargo, B. H., Bass, J. A., and Travis, L. B., The relationship between the clinical and pathologic features of poststreptococcal glomerulonephritis. A study of the early natural history, Medicine 47:227–267 (1967).Google Scholar
  153. 141.
    Pollak, V. E., Rosen, S., Pirani, C. L., Muehrcke, R. C., and Kark, R. M., Natural history of lipoid nephrosis and membranous glomerulonephritis, Ann. Intern. Med 69: 1171–1196 (1968).Google Scholar
  154. 142.
    Lewis, L. A., Plasma and urinary proteins in renal disease, Med. Clin. N. Am 39: 1015–1026 (1955).Google Scholar
  155. 143.
    Allen, A. C., The clinicopathologic meaning of the nephrotic syndrome, Am. J. Med 18: 277–314 (1955).CrossRefGoogle Scholar
  156. 144.
    Baxter, J. H., Goodman, H. C., and Havel, R. J., Serum lipid and lipoprotein alterations in nephrosis, J. Clin. Invest. 39: 355–365 (1960).Google Scholar
  157. 145.
    Block, W. M., Jackson, R. L., Stearns, G., and Butsch, M. P., Lipoid nephrosis: clinical and biochemical studies of 40 children with 10 necropsies, Pediatrics 1: 733–752 (1948).Google Scholar
  158. 146.
    Burch, R. R., Pearl, M. A., and Sternberg, W. H., A clinicopathological study of the nephrotic syndrome, Ann. Intern. Med 56: 54–67 (1962).Google Scholar
  159. 147.
    Jensen, H., Plasma protein and lipid pattern in the nephrotic syndrome, Acta Med. Scand 182: 465–473 (1967).CrossRefGoogle Scholar
  160. 148.
    Gitlin, D., Cornwell, D. G., Nakasato, D., Oncley, J. L., Huges, W. L., Jr., and Janeway, C. A., Studies on the metabolism of plasma proteins in the nephrotic syndrome, II. The lipoproteins, J. Clin. Invest 37: 172–184 (1958).CrossRefGoogle Scholar
  161. 149.
    Rifkin, H., and Peterman, M. L., Serum and urinary proteins in diabetic glomerulosclerosis, results of electrophoretic analysis, Diabetes 1: 28–32 (1952).Google Scholar
  162. 150.
    Brown, J. and Straatsma, B. R., Diabetes mellitus, current concepts and vascular lesions (renal and retinal), Ann. Intern. Med 68: 634–661 (1968).Google Scholar
  163. 151.
    Faith, G. C., and Trump B. F., The glomerular capillary wall in human kidney disease: acute glomerulonephritis, systemic lupus erythematosus, and preeclampsia-eclampsia. Comparative electron microscopic observations and a review, Lab. Invest 15: 1682–1719 (1966).Google Scholar
  164. 152.
    Pollak, V. E., Pirani, C. L., and Schwartz, F. D., The natural history of the renal manifestations of systemic lupus erythematosus, J. Lab Clin. Med 63: 537–550 (1964).Google Scholar
  165. 153.
    Pesce, A. J., Mendoza, N., Boreisha, I., Gaizutis, M. A., and Pollack, V. E., Use of enzyme linked anti DNA antibody in systemic lupus erythematosis, Clin. Chem 20: 353–359 (1974).Google Scholar
  166. 154.
    Holman, H. R. and Kunkel, H. G., Affinity between the lupus erythematosis factor and cell nucleic and nucleoprotein, Science 126: 162 (1957).CrossRefGoogle Scholar
  167. 155.
    Schur, P. H. and Monroe, M., Antibodies to ribonucleic acid in systemic lupus erythematosis, Proc. Nat. Acad. Sci 63: 1108–1112 (1969).CrossRefGoogle Scholar
  168. 156.
    Kark, R. M. and Lannigan, R., Hypertension and some diseases of small vessels of the kidney, Postgrad. Med 40: 270–281 (1966).Google Scholar
  169. 157.
    Womack, R. K. and Mathews, W. R., The renal manifestations of periaarteritis nodosa, J. Urol 59: 733–747 (1948).Google Scholar
  170. 158.
    Quinn, E. L. and Kass, E. H., Biology of Pyelonephritis, Henry Ford Hospital, International Symposium, Little, Brown and Co., Boston, Massachusetts (1960).Google Scholar
  171. 159.
    Angell, M. E., Relman, A. S., and Robbins, S. L., “Active” chronic pyelonephritis without evidence of bacterial infection, New Eng. Med. J 278: 13031308 (1968).Google Scholar
  172. 160.
    Flanigan, W. J., Renal function in chronic pyelonephritis, South. Med. J 58: 1353–1358 (1965).CrossRefGoogle Scholar
  173. 161.
    Lindeman, R. D., Scheer, R. L., and Raisz, L. G., Renal amyloidosis, Ann. Intern. Med 54: 883–898 (1961).Google Scholar
  174. 162.
    Gueft, B. and Ghidoni, J. J., The site of formation and ultrastructure of amyloid, Am. J. Pathol 43: 837–854 (1963).Google Scholar
  175. 163.
    Cohen, A. S., Amyloidosis, New Eng. J. Med. 277:522–530, 574–583, 628–638 (1967).CrossRefGoogle Scholar
  176. 164.
    Dorfman, L. E., Amador, E., and Wacker, W. E. C., Urinary lactic dehydrogenase activity. II. Elevated activities for the diagnosis of carcinomas of the kidney and bladder, Biochem. Clin. 2: 41–55 (1963).Google Scholar
  177. 165.
    Bryan, C. W. and Healy, J. K., Acute renal failure in multiple myeloma, Am. J. Med 44: 128133 (1968).Google Scholar
  178. 166.
    Lathem, W., The renal excretion of hemoglobin, regulatory mechanism and the differential excretion of free and protein-bound hemoglobin J. Clin. Invest. 38: 652–658 (1959).Google Scholar
  179. 167.
    Altman, K. A. and Stellate, R., Variation of protein content of urine in a 24 hr period, Clin. Chem 9: 63–69 (1963).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations