Abnormal Blood pH (Acidosis and Alkalosis)

  • Samuel Natelson
  • Ethan A. Natelson


This chapter logically follows Chapter 4 on the maintenance of constant pH in the human. However, it has been put here because it also leads naturally into the next chapter, which concerns the practical application of the foregoing material. For this reason, it is recommended that Chapter 4 be re-read before proceeding.


Organic Acid Metabolic Acidosis Sodium Bicarbonate Base Excess Metabolic Alkalosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading-Abnormal Blood Ph: Acidosis and Alkalosis

  1. Goldberger, E., A Primer of Waler, Electrolgte and Acid-Base Syndromes, 4th ed., Lea and Febiger, Philadelphia, Pennsylvania (1970).Google Scholar
  2. Peters, J. P. and Van Slyke, D. D., Quantitative Clinical Chemistry Vol. I, Interpretations, Williams & Wilkins, Baltimore, Maryland (1931).Google Scholar
  3. Dickens, M., Fluid and Electrolyte Balance, A Programmed Text, Davis Co., Philadelphia, Pennsylvania (1967).Google Scholar
  4. Siggaard-Andersen, O., Acid-Base Status of the Blood, 3rd ed., Williams & Wilkins, Baltimore, Maryland (1974).Google Scholar
  5. Olszowka, A. J., Rahn, H., and Farhi, L. E., Blood Gases: Hemoglobin, Base Excess and Maldistribution. Nomograms for Normal and Abnormal Bloods; Effect of Maldistribution, Lea & Febiger, Philadelphia (1973).Google Scholar


  1. 1.
    Natelson, S. and Tietz, N., Blood pH measurement with the glass electrode, Clin. Chem. 2: 320–327 (1956).Google Scholar
  2. 2.
    D’Elseaux, F. C., Blackwood, F. C., Palmer, L. E., and Sloman, K. G., Acid-base equilibrium in the normal, J. Biol. Chem. 144: 529–535 (1942).Google Scholar
  3. 3.
    Gessler, U., Clinical disturbances of electrolyte and water disturbances in neuropathies. II. Experimental and clinical data, Klin. Chem. 1: 144–148 (1963).Google Scholar
  4. 4.
    Hartmann, A. F. and Smyth, F. S., Chemical changes in the body occurring as the result of vomiting, Am. J. Dis. Child. 32: 1–28 (1926).Google Scholar
  5. 5.
    Butler, A. M., Diabetic Coma,New Eng. J. Med. 243: 648–659 (1950).CrossRefGoogle Scholar
  6. 6.
    Williams, R. N., Ketosis, Arch. Intern. Med. 107: 69–74 (1961).Google Scholar
  7. 7.
    Seligson, D., Bluemle, L. W., Jr., Webster, G. D., Jr., and Senesky, D., Organic acids in body fluids in the uremic patient,J. Clin. Invest. 38: 1042–1043 (1959).Google Scholar
  8. 8.
    Van Slyke, D. D. and Cullen, G. E., Studies of acidosis. I. The bicarbonate concentration of the blood plasma, its significance and its determination as a measure of acidosis, J. Biol. Chem. 30: 289–346 (1917).Google Scholar
  9. 9.
    Hastings, A. B. and Shock, N. W., Studies of the acid-base balance of the blood. Nomogram for calculation of acid-base data for blood, J. Biol. Chem. 104: 575–584 (1934).Google Scholar
  10. 10.
    Astrup, P., Siggaard-Andersen, O., Jorgensen, K., and Engel, K., The acid base metabolism. A new approach,Lancet 1: 1035–1039 (1960).CrossRefGoogle Scholar
  11. 11.
    Singer, R. B. and Hastings, A. B., An improved clinical method for the estimation of disturbances of the acid-base balance of human blood,Medicine 27: 223–242 (1948).CrossRefGoogle Scholar
  12. 12.
    Sinclair, M. J., Hart, R. A., Pope, M., and Campbell, E. J. M., The use of the Henderson-Hasselbalch equation in routine medical practice,Clin. Chim. Acta 19: 63–69 (1968).CrossRefGoogle Scholar
  13. 13.
    Suero, J. T. and Woolf, C. R., An equation for calculating “derived” acid base parameters, Can. J. Physiol. Pharmacol. 45: 891–895 (1967).CrossRefGoogle Scholar
  14. 14.
    Astrup, P., A new approach to acid-base metabolism, Clin. Chem. 7: 1–15 (1961).Google Scholar
  15. 15.
    Siggaard-Andersen, O., The acid-base status of the blood, Scand. J. Clin. Lab. Invest. 15: (Suppl.) 70–134 (1963).Google Scholar
  16. 16.
    Christiansen, J., Douglas, C. C., and Haldane, J. S., The absorption and dissociation of carbon dioxide by human blood, J. Physiol. (London) 48: 244277 (1914).Google Scholar
  17. 17.
    Natelson, S. and Barbour, J. H., Equation and nomogram for approximation of alkali requirements in acidosis, Am. J. Clin. Pathol. 22: 426–439 (1952).Google Scholar
  18. 18.
    Natelson, S., Chronic alkalosis with damage to the central nervous system, Clin. Chem. 4: 32–42 (1958).Google Scholar
  19. 19.
    Sanslone, W. R. and Muntwyler, E., Muscle cell pH in relation to chronicity of potassium depletion, Proc. Soc. Exp. Biol. Med. 122: 900–902 (1966).Google Scholar
  20. 20.
    Schwartz, W. B., Van Ypersele de Strihon, C., and Kassirer, J. P., Role of anions in metabolic alkalosis and potassium deficiency, New Eng. J. Med. 279: 630–639 (1968).Google Scholar
  21. 21.
    Kasserer, J. P., Berkman, P. M., Lawrenz, D. R., and Schwartz, W. B., The critical role of chloride in correction of hypokalemic, hypochloremic alkalosis in man, Am. J. Med. 38: 172–189 (1965).CrossRefGoogle Scholar
  22. 22.
    Struyvenberg, A., de Graeff, J., and Lamijer, I. D. F., Role of chloride in hypokalemic alkalosis in rat,J. Clin. Invest.44: 326–338 (1965).CrossRefGoogle Scholar
  23. 23.
    Eichenholz, A., Mulhausen, R., and Redleaf, P., The nature of the acid-base disturbance in salicylate intoxication, J. Lab. Clin. Med. 58: 816 (1961).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of BiochemistryMichael Reese Hospital and Medical CenterChicagoUSA
  2. 2.Baylor College of Medicine Methodist HospitalHoustonUSA

Personalised recommendations