Advertisement

Photoelectric Time Differentiation in Laser Microprobe Optical Emission Spectroscopy

  • W. J. Treytl
  • J. B. Orenberg
  • K. W. Marich
  • D. Glick

Abstract

The laser microprobe as an instrument for sampling and generation of optical emission spectra for elemental analysis presents special noise problems. The microprobe vaporizes a sample, usually 10−12 10−6 grange, depending on the laser energy employed, and leaves a microscopic crater. While the duration of a Q-spoiled laser beam is usually less than 100 nsec and most of the optical noise occurs during this interval,1–7 the optically emitting plasma may persist for microseconds.2,4–7 Therefore such commonly used noise reduction techniques as signal averaging, tuned frequency detection, and derivative spectroscopy are not applicable. Since all photons of a given wavelength have the same energy, energy differentiation techniques cannot be employed.

Keywords

Laser Energy Optical Emission Spectrum Optical Noise Optical Continuum Laser Microprobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Ramsden and P. Savic, Nature 203, 1217 (1964).CrossRefGoogle Scholar
  2. 2.
    J. W. Daibler and J. G. Winans, J. Opt. Soc. Amer. 58, 76 (1968).CrossRefGoogle Scholar
  3. 3.
    S. H. Kahn and F. A. Richards, IEEE J. Quantum Electron QE-1, 359 (1965).Google Scholar
  4. 4.
    M. M. Litvak and D. F. Edwards, IEEE J Quantum Electron QE-2, 486 (1966).Google Scholar
  5. 5.
    T. P. Evtushenko, A. N. Zaidel’, G. V. Ostrovskaya, and T. Ya, Chelidze, Soy. Phys. Tech. Phys. 11, 1126 (1967).Google Scholar
  6. 6.
    E. Archbald, D. W. Harper, and T. P. Hughes, Brit. J. Appl. Phys. 15, 1321 (1964).CrossRefGoogle Scholar
  7. 7.
    E. Peipmeier and H. Malmstadt, Anal. Chem. 41, 700 (1969)CrossRefGoogle Scholar
  8. 8.
    E. W. Sucov, J. L. Pack, A. V. Phelps, and A. G. Englehardt, Phys. Fluids 10, 2035 (1967).CrossRefGoogle Scholar
  9. 9.
    D. D. Burgess, B. C. Fawcett, and N. J. Peacock, Proc. Phys. Soc. (London) 92, 805 (1967).CrossRefGoogle Scholar
  10. 10.
    N. A. Peppers, E. J. Scribner, L. E. Alterton, R. C. Honey, E. S. Beatrice, I. Harding-Barlow, R. C. Rosan, and D. Glick, Anal. Chem. 40, 1178 (1968).CrossRefGoogle Scholar
  11. 11.
    E. S. Beatrice and D. Glick, Appl. Spectrosc. 23, 260 (1969)CrossRefGoogle Scholar
  12. 12.
    K. W. Marich, P. W. Carr, W. J. Treytl, D. Glick, Anal. Chem. 42, 1775 (1970).CrossRefGoogle Scholar
  13. 13.
    W. J. Treytl, K. W. Marich, J. B. Orenberg, P. W. Carr D. C. Miller, and D. Glick, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • W. J. Treytl
    • 1
  • J. B. Orenberg
    • 1
  • K. W. Marich
    • 1
  • D. Glick
    • 1
  1. 1.Division of Histochemistry, Department of PathologyStanford University Medical SchoolStanfordUSA

Personalised recommendations