High-LET Radiations

  • Eric J. Hall
Part of the Cancer book series (C, volume 6)


Radiation oncology, like most branches of medicine, is predominantly a clinical art, with the admixture of a small amount of science. Changes and improvements in this field may be empirical, based on a gradual evolution of accepted techniques, or they may be a direct result of laboratory-based research. While most advances in radiation oncology have been of the former kind, the introduction of high-LET radiations in undoubtedly one of the first concrete examples of the latter.


Fast Neutron Neutron Energy Bragg Peak Linear Energy Transfer Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baarli, J., and Bianchi, M., 1972, Observed variations of RBE values in the stopping region of a 95 MeV negative pion beam, Int. J. Radiat. Biol. 22:183.Google Scholar
  2. Barendsen, G. W., 1964, Impairment of the proliferative capacity of human cells in culture by alpha particles with differing linear energy transfer, Internat. J. Radiat. Biol. 8:453–466.CrossRefGoogle Scholar
  3. Barendsen, G. W., 1972, Radiobiological dose-effect relations for radiation characterized by a wide spectrum of LET; implications for their application in radiotherapy, in: Proceedings of the Conference on Particle Accelerators in Radiation Therapy, pp. 120–125, U.S. Atomic Energy Commission, Technical Information Center, LA-5180-c.Google Scholar
  4. Barendsen, G. W., Beusker, T. L. J., Vergroesen, A. J., and Budke, L., 1960, Effects of different ionizing radiations on human cells in tissue culture. II. Biological experiments, Radiat. Res. 13:841.PubMedCrossRefGoogle Scholar
  5. Barendsen, G. W., Walter, H. M. D., Fowler, J. F., and Bewley, D. K., 1963, Effects of different ionizing radiations on human cells in tissue culture. III. Experiments with cyclotron accelerated alpha-particles and deuterons, Radiat. Res. 18:106.PubMedCrossRefGoogle Scholar
  6. Barendsen, G. W., Koot, C. J., Van Kersen, G. R., Bewley, D. K., Field, S. B., and Parnell, C. J., 1966, The effect of oxygen on impairment of the proliferative capcity of human cells in culture by ionizing radiations of different LET, Int. J. Radiat. Biol. 10:317.CrossRefGoogle Scholar
  7. Boyd, D., Schwettman, H. A., and Simpson, J., 1973, A large acceptance pion channel for cancer therapy, Nucl. Instrum. Methods 111:315.CrossRefGoogle Scholar
  8. Brennan, J. T., Bloch, P., Hendry, G. O., Hilton, J. L., Kim, J., and Quam, W. M., 1974, Recent advances in the development of a 14 MeV neutron generator suitable for radiotherapy, Br. J. Radiol. 47:912.PubMedCrossRefGoogle Scholar
  9. Broerse, J. J., and Barendsen, G. W., 1969, Recovery of cultured cells after fast neutron irradiation, Int. J. Radiat. Biol. 15:335.CrossRefGoogle Scholar
  10. Broerse, J. J., Barendsen, G. W., and van Kersen, G. R., 1967, Survival of cultured human cells after irradiation with fast neutrons of different energies in hypoxic and oxygenated conditions, Int. J. Radiat. Biol. 13:559.CrossRefGoogle Scholar
  11. Brown, D. Q., Seydel, H. G., and Todd, P., 1973, Inactivation of cultured human cells and control of C3H mammary tumors with accelerated nitrogen ions, Cancer 32:541.PubMedCrossRefGoogle Scholar
  12. Burki, H. J., Barendsen, G. W., Raju, M. R., Amer, N. M., and Curtis, S. B., 1969, A method to determine acute radiation response of human cells to π mesons, in: Semiannual Report, Biology and Medicine, pp. 100–104, Bonner Laboratory and Lawrence Radiation Laboratory Report-UCRL-18793.Google Scholar
  13. Catterall, M., 1974a, The treatment of advanced cancer by fast neutrons from the Medical Research Council’s cyclotron at Hammersmith Hospital, London, Eur. J. Cancer 10:343.PubMedCrossRefGoogle Scholar
  14. Catterall, M., 1974b, A report on three year’s fast neutron therapy from the Medical Research Council’s cyclotron at Hammersmith Hospital, London, Cancer 34:91.PubMedCrossRefGoogle Scholar
  15. Catterall, M., and Vonberg, D.D., 1974, Treatment of advanced tumors of head and neck with fast neutrons, Br. Med. J. 3:137.PubMedCrossRefGoogle Scholar
  16. Catterall, M., Sutherland, I., and Bewley, D. K., 1975, First results of a clinical trial of fast neutrons compared with x or gamma rays in treatment of advanced tumors of the head and neck, Br. Med. J. 2:653.PubMedCrossRefGoogle Scholar
  17. Chadwick, J., 1932, Possible existence of a neutron, Nature (London) 129:312.CrossRefGoogle Scholar
  18. Clifton, K. H., Briggs, R. C., and Stone, H. B., 1966, Quantitative radiosensitivity studies of solid carcinoma in vivo: Methodology and effect of hypoxia, J. Natl. Cancer Inst. 36:965.Google Scholar
  19. Curtis, S. B., and Raju, M. R., 1968, A calculation of the physical characteristics of negative pion beams—energy—loss distribution and Bragg curves, Radiat. Res. 34:239.PubMedCrossRefGoogle Scholar
  20. Field, S. B., 1969, The relative biological effectiveness of fast neutrons for mammalian tissues, Radiology 93:915.PubMedGoogle Scholar
  21. Field, S. B., 1976, An historical survey of radiobiology and radiotherapy with fast neutrons, Curr. Top. Radiat. Res. Q. 11:1.PubMedGoogle Scholar
  22. Fowler, P. H., and Perkins, D. H., 1961, The possibility of therapeutic applications of beams of negative π mesons, Nature (London) 189:524.CrossRefGoogle Scholar
  23. Fu, K., and Phillips, T. L., 1976, The relative biological effectiveness (RBE) and oxygen enhancement ratio (OER) of neon ions for the EMT6 tumor, work in progress, Radiology 120:439.Google Scholar
  24. Ghiorso, A., Grunder, H., Hartsough, W., Lambertson, G., Lofgren, E., Low, K., Main, R., Mobley, R., Morgado, R., Salsig, W., and Selph, R., 1973, The BEVALAC. An economical facility for very energetic heavy particle research. Presented at the Particle Accelerator Conference, San Francisco, March 5–7, 1973, Lawrence Berkeley Laboratory Report LBL-1386.Google Scholar
  25. Gnanapurani, M., Raju, M. R., Richman, C., and Wolff, S., 1972, Chromatid aberrations induced by π mesons in Vicia faba root meristem cells, Int. J. Radiat. Biol. 21:49.CrossRefGoogle Scholar
  26. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., and Scott, O. C. A., 1953, The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy, Br. J. Radiol. 26:638.PubMedCrossRefGoogle Scholar
  27. Greene, D., and Jones, R. E., 1974, The “Hiletron” neutron generator at Manchester, Eur. J. Cancer 10:256.PubMedGoogle Scholar
  28. Grunder, H. A., Hartsough, W. D., and Lofgren, E. J., 1971, Acceleration of heavy ions at the Bevatron, Science 174:1128.PubMedCrossRefGoogle Scholar
  29. Hall, E. J., 1967, The oxygen effect: Pertinent or irrelevant to clinical radiotherapy, Br. J. Radiol. 40:874.CrossRefGoogle Scholar
  30. Hall, E. J., 1973, Radiobiology of heavy particle radiation therapy: Cellular studies, Radiology 108:119.PubMedGoogle Scholar
  31. Hall, E. J., and Kellerer, A. M., 1973, The biophysical properties of 3.9 GeV nitrogen ions. III. OER and RBE determinations using Vicia seedlings, Radiat. Res. 55:422.PubMedCrossRefGoogle Scholar
  32. Hall, E. J., and Kraljevic, U., 1976, Potentially lethal radiation damage as a modifier of neutron RBE; implications for radiation therapy, Radiology 121:731.PubMedGoogle Scholar
  33. Hall, E. J., and Lehnert, S., 1973, The biophysical properties of 3.9 GeV nitrogen ions. IV. OER and RBE determinations using cultured mammalian cells, Radiat. Res. 55:431.PubMedCrossRefGoogle Scholar
  34. Hall, E. J., Roizin-Towle, L. A., and Attix, F. H., 1975a, Radiobiological studies with cyclotron-produced neutrons currently used for radiotherapy, Int. J. Radiat. Oncol. 1:33.CrossRefGoogle Scholar
  35. Hall, E. J., Roizin-Towle, L., Theus, R. B., and August, L. S., 1975b, Radiobiological properties of high energy cyclotron-produced neutrons for radiotherapy, Radiology 117:173.PubMedGoogle Scholar
  36. Hewitt, H. B., and Wilson, C. W., 1971, Survival curves for tumor cells irradiated in vivo, Ann. N. Y. Acad. Sci. 95:818.CrossRefGoogle Scholar
  37. Hewitt, H. B., Chan, D. P., and Blake, E. R., 1967, Survival curves for clonogenic cells of a murine keratinizing squamous carcinoma irradiated in vivo or under hypoxic conditions, Int. J. Radiat. Biol. 12:535.CrossRefGoogle Scholar
  38. Hill, R. P., Bush, R. S., and Yeung, P., 1971, The effect of anaemia on the fraction of hypoxic cells in an experimental tumour, Br. J. Radiol. 44:299.PubMedCrossRefGoogle Scholar
  39. Holthusen, H., 1921, Pflügers Arch. 187:1.CrossRefGoogle Scholar
  40. Howes, A. E., 1969, An estimation of changes in the proportions and absolute numbers of hypoxic cells after irradiation of transplanted C3H mouse mammary tumours, Br. J. Radiol. 42:441.PubMedCrossRefGoogle Scholar
  41. Hussey, D. H., Parker, R. G., and Rogers, C. C., 1975, A preliminary report of the fast neutron therapy pilot studies in the United States, International Particle Radiation Therapy Workshop, Key Biscayne, Florida, Oct. 1–3, 1975, Proceedings (V. B. Smith, ed.), American College of Radiobiology, Philadelphia.Google Scholar
  42. Kallman, R. F., 1970, Oxygenation and reoxygenation of a mouse mammary carcinoma, in: Proceedings of the Fourth International Congress of Radiation Research, Evian, France, Advances in Radiation Research, Vol. 3 (J. F. Duplan and A. Chapiro, eds.), pp. 1195–1204, Gordon and Breach, New York, 1973.Google Scholar
  43. Kallman, R. F., 1972, The phenomenon of reoxygenation and its implications for fractionated radiotherapy, Radiology 105:135.PubMedGoogle Scholar
  44. Kaplan, H. S., 1970, Radiobiology’s contribution to radiotherapy: Promise or mirage? Radiat. Res. 43:460.PubMedCrossRefGoogle Scholar
  45. Kaplan, H. S., Schwettman, H. A., Fairbank, W. M., Boyd, D., and Bagshaw, M. A., 1973, A hospital-based superconducting accelerator for negative pi-meson beam radiotherapy, Radiology 108:159.PubMedGoogle Scholar
  46. Kligerman, M. M., West, G., Dicello, J. F., Sternhagen, C. J., Barnes, J. E., Loeffler, R. K., Dobrowolski, F., Davis, H. T., Bradbury, J. N., Lane, T. F., Peterson, D. F., and Knapp, E. A., 1976, Initial comparative response to peak pions and x rays of normal skin and underlying tissue surrounding superficial metastatic nodules, Am. J. Roentgenol. 126:261.Google Scholar
  47. Madhvanath, U., 1971, Effects of densely ionizing radiations on human lymphocytes cultured in vitro, Ph.D. thesis, University of California, Report UCRL-20680.Google Scholar
  48. Mill, A., Lewis, J. D., and Hall, W. S., 1976, Radiation response of mammalian cells after irradiation with a beam of π mesons, Br. J. Radiol. 49:166.PubMedCrossRefGoogle Scholar
  49. Morgan, R. L., 1967, Fast neutron therapy-clinical applications, in: Modern Trends in Radiotherapy (T. J. Deeley and C. A. P. Wood, eds.), pp. 171–186, Appleton-Century-Crofts, London.Google Scholar
  50. Mottram, J. C., 1936, Factor of importance in radiosensitivity of tumors, Br. J. Radiol. 9:606.CrossRefGoogle Scholar
  51. Petry, E., 1923, Biochem. Z. 135:353.Google Scholar
  52. Powers, W. E., and Tolmach, L. J., 1963, A multicomponent x-ray survival curve for mouse lymphosarcoma cells irradiated in vivo, Nature (London) 197:710.CrossRefGoogle Scholar
  53. Raju, M. R., Amer, N. M., Gnanapurani, M., and Richman, C., 1970, The oxygen effect of π mesons in Vicia faba, Radiat. Res. 41:135.PubMedCrossRefGoogle Scholar
  54. Raju, M. R., Gnanapurani, M., Stackler, B., Martins, B. I., Madhvanath, U., Howard, J., Lyman, J. T., and Mortimer, R. K., 1971, Induction of heteroallelic reversions and lethality in Saccharomyces cerevisiae exposed to radiations of various LET (60Co rays, heavy ions, and π mesons) in air and nitrogen atmospheres, Radiat. Res. 47:635.PubMedCrossRefGoogle Scholar
  55. Raju, M. R., Gnanapurani, M., Richman, C., Martins, B. I., and Barendsen, G. W., 1972, RBE and OER of π mesons for damage to cultured T-1 cells of human kidney origin, Br. J. Radiol. 45:178.PubMedCrossRefGoogle Scholar
  56. Raju, M. R., Dicello, J. F., Trujillo, T. T., and Kligerman, M., 1975, Biological effects of the Los Alamos meson beam on cells in culture, Radiology 116:191.PubMedGoogle Scholar
  57. Read, J., 1952, The effect of ionizing radiations on the broad bean root. X. The dependence of the x-ray sensitivity on dissolved oxygen, Br. J. Radiol. 25:89.PubMedCrossRefGoogle Scholar
  58. Reinhold, H. S., 1966, Quantitative evaluation of the radiosensitivity of cells of a transplantable rhabdomyosarcoma in the rat, Eur. J. Cancer 2:33.PubMedCrossRefGoogle Scholar
  59. Richman, S. P., Richman, C., Raju, M. R., and Schwartz, B., 1967, Studies of Vicia faba root meristems irradiated with a π - beam, Radiat. Res. Suppl. 7:182.PubMedCrossRefGoogle Scholar
  60. Shipley, W. U., Stanley, J. A., Courtenay, V. D., and Field, S. B., 1975, Repair of radiation damage in Lewis lung carcinoma cells following in situ treatment with fast neutrons and γ rays, Cancer Res. 35:932.PubMedGoogle Scholar
  61. Stone, R. S., 1948, Neutron therapy and specific ionization, Am. J. Roentgenol. 59:771.Google Scholar
  62. Stone, R. S., and Larkin, J. C. Jr., 1942, The treatment of cancer with fast neutrons, Radiology 39:608.Google Scholar
  63. Suit, H. D., and Maeda, M., 1967, Hyperbaric oxygen and radiobiology of a C3H mouse mammary carcinoma, J. Natl. Cancer Inst. 39:639.PubMedGoogle Scholar
  64. Thomlinson, R. H., 1969, in: Proceedings of the Carmel Conference on Time and Dose Relationship in Radiation Biology as Applied to Radiotherapy, p. 242, BNL report 50203(C-57).Google Scholar
  65. Thomlinson, R. H., 1971, The oxygen effect and radiotherapy with fast neutrons, Eur. J. Cancer 7:139.PubMedCrossRefGoogle Scholar
  66. Thomlinson, R. H., and Gray, L. H., 1955, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br. J. Cancer 9:539.PubMedCrossRefGoogle Scholar
  67. Tobias, C. A., and Todd, P. W., 1967, Heavy charged particles in cancer therapy, in: Radiobiology and Radiotherapy, pp. 1–21, National Cancer Institute Monograph No. 24.Google Scholar
  68. Todd, P. W., 1964, Reversible and irreversible effects of ionizing radiations on the reproductive integrity of mammalian cells cultured in vitro, Ph.D. thesis, Lawrence Radiation Laboratory Report UCRL-11614, Berkeley, Calif.Google Scholar
  69. Todd, P. W., 1967, Heavy ion irradiation of cultured human cells, Radiat. Res. Suppl. 7:196.PubMedCrossRefGoogle Scholar
  70. Todd, P., Schroy, C. B., Vosburgh, K. G., and Schimmerling, W., 1971, Spatial distribution of biological effect in a 3.9 GeV nitrogen ion beam, Science 174:1127.PubMedCrossRefGoogle Scholar
  71. Underbrink, A. G., Schairer, L. A., and Sparrow, A. H., 1973, The biological properties of 3.9 GeV nitrogen ions. V. Determination of relative biological effectiveness for somatic mutations in Tradescantia, Radiat. Res. 55:437.PubMedCrossRefGoogle Scholar
  72. Van Putten, L. M., 1968, tumor reoxygenation during fractionated radiotherapy: Studies with a transplantable mouse osteosarcoma, Eur. J. Cancer 4:173.CrossRefGoogle Scholar
  73. Van Putten, L. M., and Kallman, R. F., 1968, Oxygenation status of a transplantable tumor during fractionated radiotherapy, J. Nat. Cancer Inst. 40:441.PubMedGoogle Scholar
  74. White, M. G., Isaila, M., Prelec, K., Allen, H. L., 1971, Acceleration of nitrogen ions to 7.4 GeV in the Princeton particle accelerator, Science 174:1121.PubMedCrossRefGoogle Scholar
  75. Winston, B. M., Berry, R. J., and Perry, D. R., 1973, Response of Vicia faba to irradiation with abeam of negative π mesons, under aeobic and hypoxic conditions, Br. J. Radiol. 46:541.PubMedCrossRefGoogle Scholar
  76. Withers, H. R., 1976, personal communication.Google Scholar
  77. Zirkle, R. E., 1954, in: Radiation Biology, Vol. 1 (A. Hollaender, ed.), pp. 315–350, McGraw-Hill, New York.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Eric J. Hall
    • 1
  1. 1.Radiological Research LaboratoryCollege of Physicians and Surgeons of Columbia UniversityNew YorkUSA

Personalised recommendations