Advertisement

Radiation Effects on Normal Tissues

  • J. F. Fowler
  • J. Denekamp
Part of the Cancer book series (C, volume 6)

Abstract

Radiotherapy and surgery are the two most successful forms of treatment for localized neoplasms, each having a high cure rate in certain sites but a low cure rate in others. If the tumor is accessible and no vital structures are involved, surgery is the treatment of choice. The radiotherapist therefore tends to treat the more inaccessible tumors, or those with vital structures in close juxtaposition. Both surgery and radiotherapy are treatments of localized disease. Systemic chemotherapy is the main method of treatment for widely disseminated cancer, but whole-body or regional irradiation is sometimes used prophylactically, for example, in leukemia (brain) or osteosarcoma (lungs). Hyperthermia is also being used more extensively.

Keywords

Normal Tissue Skin Reaction Fraction Number Relative Biological Effectiveness Tolerance Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, G. E., Denekamp, J., and Fowler, J. F., 1976, Biological basis of radiosensitization by hypoxic-cell radiosensitizers, in Proceedings of the 9th International Congress of Chemotherapy (London, July 1975) (K. Hellman, ed.), Plenum Press, New York.Google Scholar
  2. Alper, T., 1973, Relevance of experimental radiobiology to radiotherapy, Br. Med. Bull. 29:3.PubMedGoogle Scholar
  3. Alper, T., 1974, Cell Survival after Low Doses of Irradiation, Proceedings of the Sixth L. H. Gray Conference (T. Alper, ed.), Institute of Physics and Wiley, London.Google Scholar
  4. Baclesse, F., 1958, Clinical experience with ultra-fractionated radiotherapy, in: Progress in Radiation Therapy, p. 128, Grune and Stratton, New York.Google Scholar
  5. Baker, D. J., Lindpop, P. J., Morgan, B. W. G., Skeggs, D. B. L., Whittle, R. J. M., and Williams, I. G., 1966, Monitored regional hypoxia in radiotherapy, Br. J. Radiol. 39:908.PubMedGoogle Scholar
  6. Barendsen, G. W., Broerse, J. J., and van Putten, L. M. (eds.), 1971, Fundamental and practical aspects of the application of fast neutrons in clinical radiotherapy, Proc. Rijswijk meeting (1970), Eur. J. Cancer 7:97; see also Proc. 2nd Rijswijk meeting (1973), Eur. J. Cancer 10:199.Google Scholar
  7. Bates, T., 1975, A prospective clinical trial of post-operative radiotherapy delivered in 3 fractions per week versus 2 fractions per week in breast carcinoma, Clin. Radiol. 26:297.PubMedGoogle Scholar
  8. Bergonie, J., and Tribondeau, L., 1906, Interprétation de quelques résultats de la radiotherapie et assai de fixation d’une technique rationale, C. R. Acad. Sci. 143:983. See English translation by G. Fletcher, 1959, Radiat. Res. 11:587.Google Scholar
  9. Berry, R. J., 1969, Radiotherapy plus chemotherapy—Have we gained anything by combining them in the treatment of human cancer? in: Frontiers of Radiation Therapy and Oncology, Vol. 4 (G. Vaeth, ed.), pp. 1–16, Karger, Basel.Google Scholar
  10. Berry, R. J., Wiernik, G., and Patterson, T. J. S., 1974, Skin tolerance to fractionated X-irradiation in the pig—How good a predictor is the N.S.D. formula? Br. J. Radiol. 47:185PubMedGoogle Scholar
  11. Berry, R. J., Wiernik, G., and Patterson, T. J. S., 1974, Skin tolerance to fractionated X-irradiation in the pig—How good a predictor is the N.S.D. formula? Br. J. Radiol. 47:277.PubMedGoogle Scholar
  12. Brown, J. M., and Probert, J., 1973, Long-term recovery of connective tissue after irradiation, Radiology 108:205.PubMedGoogle Scholar
  13. Brown, J. M., and Probert, J. C., 1975, Early and late radiation changes following a second course of irradiation, Radiology 115:711.PubMedGoogle Scholar
  14. Caldwell, W. L., 1974, Tolerance of skin and kidneys to conventional or split course fractionation, in: Proceedings of the Madison Conference on the Time-Dose Relationships in Clinical Therapy (W. L. Caldwell and D. D. Tolbert, eds.), pp. 38–42, University of Wisconsin, Madison.Google Scholar
  15. Carmel Conference on Time and Dose Relationships in Radiation Biology as Applied to Radiotherapy, 1969, BNL 50203 (C-57), Clearinghouse for Federal Scientific and Technical Information, NBS, Springfield, Va.Google Scholar
  16. Caldwell, W. L., and Tolbert, D. D. (eds.), 1974, Proceedings of the Madison Conference on the Time-Dose Relationships in Clinical Therapy, University of Wisconsin, Madison.Google Scholar
  17. Cavaliere, R., Ciocatto, E. C., Giovanella, B. C., Heidelberger, C., Johnson, R. O., Margottini, M., Mandovi, B., Morrica, G., and Rossi-Fanelli, A., 1967, Selective heat sensitivity of cancer cells, Cancer 20:1351.PubMedGoogle Scholar
  18. Chen, K. Y., and Withers, H. R., 1972, Survival characteristics of stem cells of gastric mucosa in C3H mice exposed to local gamma irradiation, Int. J. Radiat. Biol. 21:521.Google Scholar
  19. Cohen, L., 1968, A cell population kinetic model for fractionated radiation therapy, Br. J. Radiol. 41:522.PubMedGoogle Scholar
  20. Cohen, L., and Kerrick, J. E., 1951, Estimation of biological dosage factors in clinical radiation therapy, Br. J. Cancer 5:180.PubMedGoogle Scholar
  21. Committee for Radiation Oncology Studies, 1975, Research Plan for Radiation Therapy, Cancer Suppl. 37:2031.Google Scholar
  22. Coutard, H., 1932, Roentgen therapy of epitheliomas of tonsillar regions, hypopharynx and larynx from 1920 to 1926, Am. J. Roentgenol. 28:313.Google Scholar
  23. Denekamp, J., 1973, Changes in the rate of repopulation during multifraction irradiation of mouse skin, Br. J. Radiol. 46:381.PubMedGoogle Scholar
  24. Denekamp, J., 1975, Residual radiation damage in mouse skin 5 to 8 months after irradiation, Radiology 115:191.PubMedGoogle Scholar
  25. Denekamp, J., Ball, M. M., and Fowler, J. F., 1969, Recovery and repopulation in mouse skin as a function of time after irradiation, Radiat. Res. 37:361.PubMedGoogle Scholar
  26. Dische, S., Gray, A. J., Adams, G. E., Flockhart, I. R., Foster, J. L., Zanelli, G. D., Thomlinson, R. H., and Errington, L. M., 1976, Clinical testing of the radiosensitizer Ro-07–0582 (4 papers), Clin. Radiol. 27:151.PubMedGoogle Scholar
  27. Douglas, B. G., and Fowler, J. F., 1975, Fractionation schedules and a quadratic dose-effect relationship, Br. J. Radiol. 48:502.PubMedGoogle Scholar
  28. Douglas, B. G., and Fowler, J. F., 1976, The effect of multiple small doses of X-rays on skin reactions in the mouse and a basic interpretation, Radiat. Res. 66:401.PubMedGoogle Scholar
  29. Du Sault, L. A., 1963, The effect of oxygen on the response of spontaneous tumours in mice to radiotherapy, Br. J. Radiol. 36:749.Google Scholar
  30. Dutreix, J., 1975, Clinical trials on fractionation, in: Proceedings of the XI International Cancer Congress (Florence 1974), Vol. 5, (P. Bucalossi, U. Veronesi, and N. Cascinelli, eds.), Excerpta Medica, Amsterdam.Google Scholar
  31. Dutreix, J., Wambersie, A., and Bounik, C., 1973, Cellular recovery in human skin reactions: Application to dose fraction number overall time relationship in radiotherapy, Eur. J. Cancer 9:159.PubMedGoogle Scholar
  32. Elkind, M. M., Swain, R. W., Alescio, T., Sutton, H., and Moses, W. B., 1965, Oxygen, nitrogen, recovery and radiation therapy, in: Cellular Radiation Biology, pp. 442–468, Williams and Wilkins, Baltimore.Google Scholar
  33. Ellis, F., 1969, Dose, time and fractionation: A clinical hypothesis, Clin. Radiol. 20:1.PubMedGoogle Scholar
  34. Ellis, F., 1974, The NSD concept and the treatment of resistant tumours, in: Proceedings of the Conference on the Time-Dose Relationships in Clinical Therapy (W. Caldwell and D. D. Tolbert, eds.), pp. 74–81, 188–189, 208–209, University of Wisconsin, Madison.Google Scholar
  35. Emery, E. W., Denekamp, J., Ball, M. M., and Field, S. B., 1970, Survival of mouse skin epithelial cells following single and divided doses of X-rays, Radiat. Res. 41:450.PubMedGoogle Scholar
  36. Field, S. B., 1969, Early and late reactions in skin of rats following irradiation with X-rays or fast neutrons, Radiology 92:381.PubMedGoogle Scholar
  37. Field, S. B., 1972, The Ellis formula for X-rays and fast neutrons, Br. J. Radiol. 45:315.PubMedGoogle Scholar
  38. Field, S. B., 1976, An historical survey of radiobiology and radiotherapy with fast neutrons, Curr. Top. Radiat. Res. Q. 11:1.PubMedGoogle Scholar
  39. Field, S. B., and Bewley, D. K., 1974, Effects of dose rate on the radiation response of rat skin, Int. J. Rod. Biol. 26:259.Google Scholar
  40. Field, S. B., and Hornsey, S., 1971, RBE values for cyclotron neutrons for effects on normal tissues and tumours as a function of doses and dose fractionations, Eur. J. Cancer 7:161.PubMedGoogle Scholar
  41. Field, S. B., and Hornsey, S., 1974, The link between animal experiments and clinical practice, in: Biomedical, Chemical, and Physical Perspectives (O. F. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 1125–1135, Academic Press, New York.Google Scholar
  42. Field, S. B., Morris, C., Denekamp, J., and Fowler, J. F., 1975, The response of mouse skin to fractionated X-rays, Eur. J. Cancer 11:291.PubMedGoogle Scholar
  43. Field, S. B., Hornsey, S., and Kutsutani, Y., 1976, Effects of fractionated irradiation on mouse lung and a phenomenon of slow repair, Br. J. Radiol. 49:700.PubMedGoogle Scholar
  44. Fletcher, G. H., 1966, Textbook of Radiotherapy, Lea and Febiger, Philadelphia.Google Scholar
  45. Fletcher, G. H., 1973, Clinical dose-response curves of human malignant epithelial tumours, Br. J. Radiol. 46:1.PubMedGoogle Scholar
  46. Fowler, J. F., 1976, The relationship between pion therapy and other new modalities: Neutrons, hypoxic-cell radiosensitizers and non-standard fractionation, Atomkernenergie 27:161.Google Scholar
  47. Fowler, J. F., and Denekamp, J., 1976, Regulation of epidermal stem cells, in: Proceedings of the Leblond Symposium on Stem Cells (Montreal, October 1975), (A. B. Cairnie, ed.), p. 117, Academic Press, New York.Google Scholar
  48. Fowler, J. F., and Stern, B. E., 1963, Dose-time relationships in radiotherapy and the validity of cell survival curve models, Br. J. Radiol. 36:163.PubMedGoogle Scholar
  49. Fowler, J. F., Morgan, R. L., Silvester, J. A., Bewley, D. K., and Turner, B. A., 1963, Experiments with fractionated X-ray treatment of the skin of pigs. I. Fractionation up to 28 days, Br. J. Radiol. 36:188.PubMedGoogle Scholar
  50. Gauwerky, F., Langheim, F., and Teebken, F., 1972, Ein Zeitfaktoruntersuchung zur Strahlenfibrose der Unterhaut nach Telekobaltbestrahlung, Beiheft der Fortschr. a. d. Gebiete Röntgenstr. u. d. Nuklearmedizin, p. 15, Thieme, Stuttgart.Google Scholar
  51. Glatstein, E. J., 1973, Alterations in rubidium-86 extraction in normal mouse tissues after irradiation. An estimate of long-term blood flow changes in kidney, lung, liver, skin and muscle, Pediat. Res. 53:88.Google Scholar
  52. Glatstein, E. J., Brown, R. C., Zanelli, G. D., and Fowler, J. F., 1975, The uptake of Rb-86 in mouse kidneys irradiated with fractionated doses of X-rays, Radiat. Res. 61:417.PubMedGoogle Scholar
  53. Hall, E. J., 1972, Radiation dose-rate: A factor of importance in radiobiology and radiotherapy, Br. J. Radiol. 45:81.PubMedGoogle Scholar
  54. Henle, K. J., and Leeper, D. B., 1975, The interaction of hyperthermia and radiation in CHO cells: Recovery kinetics of sublethal damage. Radiat. Res. 65:591 (abst.).Google Scholar
  55. Hockly, J. D. L., and Sealy, R., 1977, The treatment of carcinoma of the cervix using 2 or 5 fractions per week in air and in hyperbaric oxygen, S. Afr. Med. J. (in press).Google Scholar
  56. Hopewell, J. W., and Berry, R. J., 1975, Radiation tolerance of the pig kidney: A model for determining overall time and fraction factors for preserving renal function, Int. J. Radiat. Oncol. Biol. Physics 1:61.Google Scholar
  57. Hornsey, S., and Alper, T., 1966, Unexpected dose-rate effect in the killing of mice by irradiation, Nature (London) 210:212.Google Scholar
  58. Hornsey, S., and Bewley, D. K., 1971, Hypoxia in mouse intestine induced by electron irradiation at high dose-rates, Int. J. Radiat. Biol. 19:479.Google Scholar
  59. Hornsey, S., and Field, S. B., 1974, The RBE of cyclotron neutrons for effects on normal tissues, Eur. J. Cancer 10:231.PubMedGoogle Scholar
  60. Hornsey, S., and Vatistas, S., 1963, Some characteristics of the survival curves of crypt cells of the small intestine characteristics of the survival curves of crypt cells of the small intestine of the mouse deduced after whole body X-irradiation, Br. J. Radiol. 36:795.PubMedGoogle Scholar
  61. Jardine, J. H., Hussey, D. H., Boyd, D. D., Raulston, G. L., and Davidson, T. J., 1975, Acute and late effects of 16 and 50 MeVd on Be neutrons (and cobalt-60 radiation) on the oral mucosa of rhesus monkeys, Radiology 117:185.PubMedGoogle Scholar
  62. Kal, H. B., Janse, H. C., and Gaiser, F. J., 1975, Repair of radiation and hyperthermic induced lesions in rat rhabdomyosarcoma cells in vitro, REP Annual Report 1975 pp. 30–32, TNO Radiobiological Institute, Rijswijk, the Netherlands.Google Scholar
  63. Kirk, J., Gray, W. M., and Watson, E. R., 1971, Cumulative radiation effect. Part I: Fractionated treatment regimes, Clin. Radiol. 22:145.PubMedGoogle Scholar
  64. Kramer, S., Southard, M. E., and Mansfield, C. M., 1972, Radiation effect and tolerance of the CNS, in: Frontiers of Radiation Therapy and Oncology, Vol. 6 (G. M. Vaeth, ed.), p. 332, Karger, Basel.Google Scholar
  65. Krönig, B., and Friedrich, W., 1918, Physikalische und biologische Grundlagen der Strahlentherapie, Urban and Schwarzenberg, Berlin.Google Scholar
  66. Lambertsen, C. J., 1966, Physiological effects of oxygen inhalation at high partial pressures, in: Fundamentals of Hyperbaric Medicine, p. 17, Publication No. 1298, National Academy of Sciences, Washington, D.C.Google Scholar
  67. Liversage, W. E., 1969, A general formula for equating protracted and acute regimes of radiation, Br. J. Radiol. 42:432.PubMedGoogle Scholar
  68. Liversage, W. E., 1971, A critical look at the ret, Br. J. Radiol. 44:91.PubMedGoogle Scholar
  69. McNally, N. J., 1972, A low O.E.R. for tumour cell survival as compared with that for tumour growth delay, Int. J. Radiat. Biol. 22:407.Google Scholar
  70. McNally, N.J., 1975, The effect of an hypoxic cell sensitizer on tumour growth delay and cell survival: Implications for cell survival in situ and in vitro, Br. J. Cancer 32:610.PubMedGoogle Scholar
  71. Mendelsohn, M. L., 1969, The biology of dose-limiting tissues, in: Time and Dose Relationships in Radiation Biology as Applied to Radiotherapy, BNL 50203, p. 154.Google Scholar
  72. Montague, E. D., 1968, Experience with altered fractionation in radiation therapy of breast cancer, Radiology 90:962.PubMedGoogle Scholar
  73. Morrison, R., 1975, The results of treatment of cancer of the bladder—A clinical contribution to radiobiology, Clin. Radiol. 26:67.PubMedGoogle Scholar
  74. Moss, W. T., Brand, W. N., and Battifora, H., 1973, Radiation Oncology: Rationale, Technique, Results, C. V. Mosby Co., St. Louis.Google Scholar
  75. Orton, C. G., and Ellis, F., 1973, A simplification in the use of the NSD concept in practical radiotherapy, Br. J. Radiol. 46:529.PubMedGoogle Scholar
  76. Paterson, R., 1948, The Treatment of Malignant Disease by Radiotherapy, Edwin Arnold Co., London.Google Scholar
  77. Peters, L. J., 1975, Enhancement of syngeneic murine tumour transplantability by whole-body irradiation: A non-immunogenic phenomenon, Br. J. Cancer 31:293.PubMedGoogle Scholar
  78. Peters, L. J., and Hewitt, H. B., 1974, The influence of fibrin formation on the transplantability of murine tumour cells: Implications for the mechanism of the Révész effect, Br. J. Cancer 29:279.PubMedGoogle Scholar
  79. Phillips, T. L., and Bushke, F., 1969, Radiation tolerance of the thoracic spinal cord, Am. J. Roentgenol. 105:659.Google Scholar
  80. Phillips, T. L., and Fu, K., 1974, Derivation of time-dose factors for normal tissues using experimental end-points in the mouse, in: Proceedings of the Conference on the Time-Dose Relationships in Clinical Therapy (W. L. Caldwell and D. D. Tolbert, eds.), pp. 42–47, University of Wisconsin, Madison.Google Scholar
  81. Phillips, T. L., and Margolis, L. W., 1972, Radiation pathology and clinical response of lung and esophagus, in: Frontiers of Radiation Therapy and Oncology, Vol. 6 (J. M. Vaeth, ed.), pp. 254–273, Karger, Basel.Google Scholar
  82. Regaud, C., and Ferroux, R., 1937, Discordance des effets des rayons X, d’une part dan la peau, d’autre part dans le testicule par le fractionnement de la dose, diminution d’efficacité dans la peau, maintien de l’efficacité dans le testicule, C. R. Soc. Biol. 97:431.Google Scholar
  83. Reinhold, H. S., and Buisman, G. H., 1975, Repair of radiation damage to capillary endothelium, Br. J. Radiol. 48:727.PubMedGoogle Scholar
  84. Rosenberg, S. A., and Kaplan, H. A. S., 1966, Evidence for an orderly progression in the spread of Hodgkin’s disease, Cancer Res. 26:1225.PubMedGoogle Scholar
  85. Rubin, P., and Casarett, G. W., 1968, Clinical Radiation Pathology, Vols. I and II, p. 1057, Saunders, Philadelphia.Google Scholar
  86. Rubin, P., and Casarett, G. W., 1972, A direction for clinical radiation pathology: The tolerance dose, in: Frontiers of Radiation Therapy and Oncology, Vol. 6 (J. M. Vaeth, ed.), pp. 1–16, Karger, Basel.Google Scholar
  87. Scitz, L., and Wintz, W., 1920, Unsere Methode der Röntgentherapie, Berlin.Google Scholar
  88. Shukovsky, L. J., 1970, Dose, time, volume relationships in squamous cell carcinoma of the supraglottis larynx, Am. J. Roentgenol. 108:27.Google Scholar
  89. Shukovsky, L. J., 1974, Clinical applications of time-dose data to tumour control, in Proceedings of the Madison Conference on the Time-Dose Relationships in Clinical Therapy (W. L. Caldwell and D.D. Tolbert, eds.), pp. 118–130, University of Wisconsin, Madison.Google Scholar
  90. Shukovsky, L. J., and Fletcher, G. H., 1973, Time-dose and tumour volume relationships in squamous cell carcinoma of the tonsillar fossa, Radiology 107:621.PubMedGoogle Scholar
  91. Stewart, F. A., and Denekamp, J., 1977, Sensitization of mouse skin to X-irradiation by moderate heating, Radiology 123:195.PubMedGoogle Scholar
  92. Stewart, J. G., and Jackson, A. W., 1975, The steepness of the dose response curve both for tumour cure and normal tissue injury, Laryngoscope 85:1107.PubMedGoogle Scholar
  93. Stratford, I. J., and Adams, G. E., 1977, Effect of hyperthermia on differential cytotoxicity of a hypoxic cell radiosensitizer, Ro-07–0582, on mammalian cells in vitro, Br. J. Cancer 35:307.PubMedGoogle Scholar
  94. Suit, H. D., 1965, Radiation therapy given under conditions of local hypoxia for bone and soft tissue sarcoma, in: Tumours of Bone and Soft Tissue, pp. 143–163, Year Book Medical Publishers, Chicago.Google Scholar
  95. Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A., Lehmann, A. R., Stevens, S., and Bridges, B. A., 1975, Ataxia telangiectasia: A human mutation with abnormal radiation sensitivity, Nature (London) 258:427.Google Scholar
  96. Thomlinson, R. H., and Gray, L. H., 1955, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br. J. Cancer 9:539.PubMedGoogle Scholar
  97. Thrall, D. E., Gillette, E. L., and Bauman, C. L., 1973, Effect of heat on the C3H mouse mammary adenocarcinoma evaluated in terms of tumour growth, Eur. J. Cancer 9:871.PubMedGoogle Scholar
  98. Till, J. E., and McCulloch, E. A., 1961, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res. 14:213.PubMedGoogle Scholar
  99. Till, J. E., and McCulloch, E. A., 1963, Early repair processes in marrow cells irradiated and proliferating in vivo, Radiat. Res. 18:96.PubMedGoogle Scholar
  100. Turesson, I., and Notter, G., 1975, Skin reactions after different fractionation schedules giving the same cumulative radiation effect, Acta Radiol. Ther. Phys. Biol. 14:475.PubMedGoogle Scholar
  101. Vaeth, J. M., 1972, Frontiers of Radiation Therapy and Oncology, Vol. 6, Karger, Basel.Google Scholar
  102. Van den Brenk, H. A. S., 1965, Enhancement of radiosensitivity of skin of patients by high pressure oxygen, Br. J. Radiol. 38:857.PubMedGoogle Scholar
  103. Van den Brenk, H. A. S., 1968, Hyperbaric oxygen in radiation therapy, Am. J. Roentgenol. 52:8.Google Scholar
  104. Van den Brenk, H. A. S., 1971, Radiation effects on the pulmonary system, in: Pathology of Irradiation (C. G. Berdjis, ed.), p. 569, Williams and Wilkins, Baltimore.Google Scholar
  105. Van den Brenk, H. A. S., Burch, W. M., Orton, C., and Sharpington, C., 1973, Stimulation of clonogenic growth of tumour cells and metastases in the lungs by local X-radiation, Br. J. Cancer 27:291.Google Scholar
  106. Van den Brenk, H. A. S., Sharpington, C., Oorton, C., and Stone, M., 1974, Effects of X-radiation on growth and function of the repair blastema (granulation tissue). II. Measurements of angiogenesis in the Selye pouch in the rat, Int. J. Radiat. Biol. 25:277.Google Scholar
  107. Van den Brenk, H. A. S., Stone, M. G., Kelly, H., and Sharpington, C., 1976. Lowering of innate resistance of the lungs to the growth of blood-borne cancer cells in states of topical and systemic stress, Br. J. Cancer 33:60.Google Scholar
  108. Van der Kogel, A. J., and Barendsen, G. W., 1974, Late effects of spinal cord irradiation with 300 kV X-rays and 15 MeV neutrons, Br. J. Radiol. 47:393.PubMedGoogle Scholar
  109. Van der Kogel, A. J., and Sissingh, H. A., 1975, Dose-latent-period relationships for radiation induced damage of the rat spinal cord, REP Annual Report, pp. 19–21, TNO Radiobiological Institute, Rijswijk, the Netherlands.Google Scholar
  110. Van der Kogel, A. J., van Bekkum, D. W., and Barendsen, G. W., 1976, Tolerance of CNS to total body irradiation combined with chemotherapy applied for the treatment of leukaemia, Eur. J. Cancer 12:675.PubMedGoogle Scholar
  111. Verzosa, M. S., Aur, R. J. A., Simone, J. V., Huster, H. O., and Pinkel, D. P., 1976, Five years after CNS irradiation of children with leukaemia, Int. J. Radiat. Oncol. Biol. Phys. 1:209.PubMedGoogle Scholar
  112. Wara, W. M., Phillips, T. L., Margolis, L. W., and Smith, V., 1973, Radiation pneumonitis: A new approach to the derivation of time-dose factors, Cancer 32:547.PubMedGoogle Scholar
  113. Wara, W. M., Phillips, T. L., Sheline, G. E. and Schwade, J. G., 1975, Radiation tolerance of the spinal cord, Cancer 35:1558.PubMedGoogle Scholar
  114. Westra, A., and Dewey, W. C., 1971, Varition in sensitivity to heat shock during the cell cycle of Chinese hamster cells in vitro, Int. J. Radiat. Biol. 19:467.Google Scholar
  115. Wiernik, G., Patterson, T. J. S., and Berry, R. J., 1974, The effect of fractionated dose-patterns of X-radiation on the survival of experimental skin flabs in the pig, Brit. J. Radiol. 47:343.PubMedGoogle Scholar
  116. Withers, H. R., 1967, The dose-survival relationships for irradiation of epithelial cells of mouse skin, Br. J. Radiol. 40:187.PubMedGoogle Scholar
  117. Withers, H. R., 1971, Regeneration of intestinal mucosa after irradiation, Cancer 28:75.PubMedGoogle Scholar
  118. Withers, H. R., 1974, Iso-effect curves for various proliferative tissues in experimental animals, in: Proceedings of the Conference on the Time—Dose Relationships in Clinical Therapy (W. L. Caldwell and D. D. Tolbert, eds.), pp. 30–38, University of Wisconsin, Madison.Google Scholar
  119. Withers, H. R., and Elkind, M. M., 1969, Radiosensitivity and fractionation response of crypt cells of mouse jejunum, Radiat. Res. 38:598.PubMedGoogle Scholar
  120. Withers, H. R., and Elkind, M. M., 1970, Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation, Int. J. Radiat. Biol. 17:261.Google Scholar
  121. Withers, H. R., and Milas, L., 1973, The influence of pre-irradiation of lung on development of artificial pulmonary metastases of fibrosarcoma in mice, Cancer Res. 33:1931.PubMedGoogle Scholar
  122. Withers, H. R., Hunter, N., Barkley, H. T., and Reid, B. O., 1974, Radiation survival and regeneration characteristics of spermatogenic stem cells of mouse testis, Radiat. Res. 57:58.Google Scholar
  123. Young, C. M. A., Brennan, D., Durrant, K., Hopewell, J. W., and Wiernik, G., 1976, The effects of varied numbers of dose fractions and overall treatment time on the radiation response of normal human skin, Br. J. Radiol. 49:558.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. F. Fowler
    • 1
  • J. Denekamp
    • 1
  1. 1.Gray Laboratory, Cancer Research CampaignMount Vernon HospitalNorthwood, MiddlesexEngland

Personalised recommendations