Advertisement

Cell Proliferation Kinetics and Radiation Therapy

  • J. Denekamp
  • J. F. Fowler
Part of the Cancer book series (C, volume 6)

Abstract

Radiation can perturb the cell proliferation kinetics of a population, and the cell kinetics can itself influence the response of the cell population to any further dose of radiation. These mutual interactions are of importance in the response of tumors and normal tissues to fractionated irradiation.

Keywords

Cell Loss Hyperbaric Oxygen Hypoxic Cell Growth Fraction Volume Doubling Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper, T., and Gillies, N. E., 1958, “Restoration” of Escherichia coli strain B after irradiation: Its dependence on suboptimal growth conditions, J. Gen. Microbiol. 18:461.PubMedGoogle Scholar
  2. Alper, T., and Howard-Flanders, P., 1956, The role of oxygen in modifying the radiosensitivity of E. coli B, Nature (London) 178:978.CrossRefGoogle Scholar
  3. Begg, A. C., 1971, Kinetic and histological changes of a serially transplanted mouse tumour, Cell Tissue Kinet. 4:401.PubMedGoogle Scholar
  4. Begg, A. C., 1975, Ph.D. thesis, London.Google Scholar
  5. Begg, A. C., 1977, Cell loss from several types of murine solid tumour, measured in situ using 125I-iodo-deoxyuridine or tritiated thymidine, Radiat. Res. 69 (in press).Google Scholar
  6. Bennington, T. C., 1969, Cellular kinetics of invasive squamous carcinoma of the human cervix, Cancer Res. 29:1082.PubMedGoogle Scholar
  7. Bresciani, F., 1965, A comparison of the cell generative cycle in normal, hyperplastic and neoplastic mammary gland of the C3H mouse, in: Cellular Radiation Biology, pp. 547–557, Williams and Wilkins, Baltimore.Google Scholar
  8. Bresciani, F., and Nervi, C., 1976, Growth kinetics in human squamous carcinoma, in: Growth Kinetics and Biochemical Regulation of Normal and Malignant Cells, Proceedings of the 29th Annual Symposium on Fundamental Cancer Research, Houston, in press.Google Scholar
  9. Bresciani, F., Paoluzi, R., Benassi, M., Nervi, C., Casale, V., and Ziparo, E., 1974, Cell kinetics and growth in squamous cell carcinomas in man, Cancer Res. 34:2405.PubMedGoogle Scholar
  10. Brown, J. M., 1970, The effect of acute X-irradiation on the cell proliferation kinetics of induced carcinomas and their normal counterpart, Radiat. Res. 43:627.PubMedCrossRefGoogle Scholar
  11. Cameron, I. L., 1970, Cell renewal in the organs and tissues of the non-growing adult mouse, Tex. Rep. Biol. Med. 28:203.PubMedGoogle Scholar
  12. Catterall, M., Sutherland, I., and Bewley, D. K., 1975, First results of a randomised clinical trial of fast neutrons compared with X- or gamma rays in treatment of advanced tumours of the head and neck, Br. Med. J., p. 653.Google Scholar
  13. Charbit, A., Malaise, E. P., and Tubiana, M., 1971, Relation between the pathological nature and the growth rate of human tumors, Eur. J. Cancer 7:307.PubMedGoogle Scholar
  14. Chen, K. Y., and Withers, H. R., 1972, Survival characteristics of stem cells of gastric mucosa in C3H mice exposed to local gamma irradiation, Int. J. Radiat. Biol. 21:521.CrossRefGoogle Scholar
  15. Clifton, K. H., and Briggs, R. C., 1966, Quantitative radiosensitivity studies of solid carcinomas in vivo: Methodology and effect of anoxia, J. Natl. Cancer Inst. 36:965.Google Scholar
  16. Clifton, K. H., and Jirtle, R., 1975, Mammary carcinoma cell population growth in pre-irradiated and unirradiated transplant sites, Radiology 117:459.PubMedGoogle Scholar
  17. Collins, V. P., Loeffler, R. K., and Tivey, H., 1956, Observations on growth rates of human tumours, Am. J. Roentgenol. 76:988.Google Scholar
  18. Denekamp, J., 1970, The cellular proliferation kinetics of animal tumours, Cancer Res. 30:303.Google Scholar
  19. Denekamp, J., 1972, The relationship between the “cell loss factor” and the immediate response to radiation in animal tumours, Eur. J. Cancer 8:335.PubMedGoogle Scholar
  20. Denekamp, J., 1973, Changes in the rate of repopulation during multifraction irradiation of mouse skin, Br. J. Radiol. 46:381.PubMedCrossRefGoogle Scholar
  21. Denekamp, J., 1975, Changes in the rate of proliferation in normal tissues after irradiation, in: Radiation Research: Biomedical, Chemical and Physical Perspectives (O. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 810–825, Academic Press, New York.Google Scholar
  22. Denekamp, J., and Harris, S. R., 1976, Studies of the processes occurring between two fractions in experimental mouse tumours, Int. J. Radiat. Oncol. Biol. Phys. 1:421.PubMedCrossRefGoogle Scholar
  23. Denekamp, J., and Kallman, R. F., 1973, In vitro and in vivo labelling of animal tumours with tritiated thymidine, Cell Tissue Kinet. 6:217.PubMedGoogle Scholar
  24. Denekamp, J., and Thomlinson, R. H., 1971, The cell proliferation kinetics of four experimental tumours after acute X-irradiation, Cancer Res. 31:1279.PubMedGoogle Scholar
  25. Denekamp, J., Ball, M. M., and Fowler, J. F., 1969, Recovery and repopulation in mouse skin as a function of time after X-irradiation, Radiat. Res. 37:361.PubMedCrossRefGoogle Scholar
  26. Denekamp, J., Stewart, F. A., and Douglas, B. G., 1976, Changes in the prpliferation rate in mouse skin after irradiation: Continuous labelling studies, Cell Tissue Kinet. 9:19.PubMedGoogle Scholar
  27. Deschner, E. E., and Gray, L. H., 1959, Influence of oxygen tension on X-ray induced chromosomal damage in Ehrlich ascites tumour cells irradiated in vitro and in vivo, Radiat. Res. 11:115.PubMedCrossRefGoogle Scholar
  28. Dethlefson, L. A., 1971, An evaluation of radio iodine-labelled 5-iodo-2-deoxyuridine as a tracer for measuring cell loss from solid tumours, Cell Tissue Kinet. 4:123.Google Scholar
  29. Dische, S., 1974, The hyperbaric oxygen chamber in the radiotherapy of carcinoma of the uterine cervix, Br. J. Radiol. 47:99.PubMedCrossRefGoogle Scholar
  30. Doida, Y., and Okada, S., 1969, Radiation induced mitotic delay in cultured mammalian cells L5178Y, Radiat. Res. 38:513.PubMedCrossRefGoogle Scholar
  31. Dombernowsky, P., and Hartmann, N. R., 1972, Analysis of variations in the cell population kinetics with tumour age in the L1210 ascites tumour, Cancer Res. 32:2452.PubMedGoogle Scholar
  32. Dormer, P., Tulinius, H., and Oehlert, W., 1964, Untersuchungen über die Generationszeit, DNA Synthesezeit und Mitosedauer von Zellen der hyperplastischen Epidermis und des Plattenepithel-carcinomas der Maus nach MCA, Z. Krebsforsch. 66:11.CrossRefGoogle Scholar
  33. Durand, R. E., and Sutherland, R. M., 1972, Effects of intercellular contact on repair of radiation damage, Exp. Cell Res. 71:75.PubMedCrossRefGoogle Scholar
  34. Elkind, M. M., and Sutton, H., 1959, X-ray damage and recovery in mammalian cells in culture, Nature (London) 184:1293.CrossRefGoogle Scholar
  35. Elkind, M. M., Han, A., and Volz, K. W., 1963, Radiation response of mammalian cells grown in culture. IV. Dose dependence of division delay and postirradiation growth of surviving and non-surviving Chinese hamster cells, J. Natl. Cancer Inst. 30:705.Google Scholar
  36. Ellis, F., 1969, Dose, time and fractionation, a clinical hypothesis, Clin. Radiol 20:1.PubMedCrossRefGoogle Scholar
  37. Emery, E. W., Denekamp, J., Ball, M. M., and Field, S. B., 1970, Survival of mouse skin epithelial cells following single and divided doses of X-rays, Radiat. Res. 41:450.PubMedCrossRefGoogle Scholar
  38. Etoh, H., Taguchi, Y. H., and Tabachnick, J., 1975, Movement of beta-irradiated epidermal basal cells to the spinous-granular layers in the absence of cell division, J. Invest. Dermatol. 64:431.PubMedCrossRefGoogle Scholar
  39. Field, S. B., Morris, C., Denekamp, J., and Fowler, J. F., 1975, The response of mouse skin to fractionated x-rays, Eur. J. Cancer 11:191.Google Scholar
  40. Field, S. B., Hornsey, S., and Kutsutani, Y., 1976, Effects of fractionated irradiation on mouse lung: A phenomenon of slow repair, Br. J. Radiol. 49:700.PubMedCrossRefGoogle Scholar
  41. Folkman, J., 1974, Tumor angiogenesis factor, Cancer Res. 34:2109.PubMedGoogle Scholar
  42. Fowler, J. F., and Denekamp, J., 1976, Regulation of epidermal stem cells, in: Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 117–134, Academic Press, New York.Google Scholar
  43. Fowler, J. F., Lindop, P. J., Berry, R. J., Kragt, K., and Ellis, R. E., 1965, Split dose experiments on skin reactions in mice, Int. J. Radiat. Biol. 9:241.CrossRefGoogle Scholar
  44. Fowler, J. F., Sheldon, P. W., Begg, A. C., Hill, S. A., and Smith, A. M., 1975, Biological properties and response to X-rays of first generation transplants of spontaneous mammary carcinomas in C3H mice, Int. J. Radiat. Biol. 27:463.CrossRefGoogle Scholar
  45. Frankfurt, O. S., 1967a, Mitotic cycle and cell differentiation in squamous cell carcinomas, Int. J. Cancer 2:304.PubMedCrossRefGoogle Scholar
  46. Frankfurt, O. S., 19676, Cell proliferation and differentiation in the squamous epithelium of the forestomach of the mouse, Exp. Cell Res. 46:603.Google Scholar
  47. Frindel, E., Malaise, E. P., Alpen, E., and Tubiana, M., 1967, Kinetics of cell proliferation of an experimental tumour, Cancer Res. 27:1122.PubMedGoogle Scholar
  48. Frindel, E., Vassort, F., and Tubiana, M., 1970, Effects of irradiation on the cell cycle of an experimental ascites tumour of the mouse, Int. J. Radiat. Biol. 17:329.CrossRefGoogle Scholar
  49. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S., and Scott, O. C. A., 1953, The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy, Br. J. Radiol. 26:638.PubMedCrossRefGoogle Scholar
  50. Hahn, G. M., 1968a, Possible improvements in differential cell killing by cell cycle modulation, Br. J. Radiol. 41:239.CrossRefGoogle Scholar
  51. Hahn, G. M., 1968b, Failure of Chinese hamster cells to repair sublethal damage when x-irradiated in the plateau phase of growth, Nature (London) 217:741.CrossRefGoogle Scholar
  52. Hahn, G. M., 1975, Modification of cell killing by precise timing of x-irradiation, in: Proceedings of the Madison Conference on the Time-Dose Relationships in Clinical Radiotherapy (W. Caldwell and D. D. Tolbert, eds.), pp. 153–159, University of Wisconsin, Madison, Wis.Google Scholar
  53. Hahn, G. M., and Little, J. B., 1972, Plateau-phase cultures of mammalian cells: An in vitro model for human cancer, Curr. Top. Radiat. Res. Q. 8:39.PubMedGoogle Scholar
  54. Hahn, G. M., Rockwell, S. C., Kallman, R. F., and Frindel, E., 1972, Repair of potentially lethal damage in tumour cells X-irradiated in vivo, Radiat. Res. 51:523.Google Scholar
  55. Hasegawa, K., Matsuura, Y., and Shimpei, T., 1976, Cellular kinetics and histological changes in experimental cancer of the uterine cervix, Cancer Res. 36:359.PubMedGoogle Scholar
  56. Hegazy, M. A. H., and Fowler, J. F., 1973, Cell population kinetics and desquamation skin reactions in plucked and unplucked mouse skin. II. Irradiated skin, Cell Tissue Kinet. 6:587.PubMedGoogle Scholar
  57. Henk, J. M., and Smith, C. W., 1973, Unequivocal clinical evidence for the oxygen effect, Br. J. Radiol. 46:146.PubMedCrossRefGoogle Scholar
  58. Hermens, A. F., 1973, Variations in the cell kinetics and the growth rate in an experimental tumor during natural growth and after irradiation, Ph.D. thesis, Radiobiological Inst. T.N.O., Rijswijk, the Netherlands.Google Scholar
  59. Hermens, A. F., and Barendsen, G. W., 1967, Cellular proliferation patterns in an experimental rhabdomyosarcoma in the rat, Eur. J. Cancer 3:361.PubMedGoogle Scholar
  60. Hermens, A. F., and Barendsen, G. W., 1969, Changes in cell proliferation characteristics in a rat rhabdomyosarcoma before and after X-irradiation, Eur. J. Cancer 5:173.PubMedGoogle Scholar
  61. Hewitt, H. B., and Blake, E. R., 1968, The growth of transplanted murine tumours in pre-irradiated sites, Br. J. Cancer 22:808.PubMedCrossRefGoogle Scholar
  62. Hewitt, H. B., and Wilson, C. W., 1961, Survival curves for tumor cells irradiated in vivo, Ann. N. Y. Acad. Sci. 95:818.PubMedCrossRefGoogle Scholar
  63. Hewitt, H. B., Chan, D. P. S., Blake, E. R., 1967, Survival curves for clonogenic cells of a murine keratinising squamous carcinoma irradiated in vivo or under hypoxic conditions, Int. J. Radiat. Biol. 12:539.CrossRefGoogle Scholar
  64. Hewitt, H. B., Blake, E. R., and Wälder, A. S., 1976, A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin, Br. J. Cancer 33:241.PubMedCrossRefGoogle Scholar
  65. Hill, R. P., and Bush, R. S., 1977, Repair and reoxygenation in a transplantable murine sarcoma, Radiat. Res. 70 (in press).Google Scholar
  66. Hill, R. P., Bush, R. S., and Yeung, P., 1971, The effect of anaemia on the fraction of hypoxic cells in an experimental tumour, Br. J. Radiol. 44:299.PubMedCrossRefGoogle Scholar
  67. Howes, A. E., 1969, An estimation of changes in the proportion of hypoxic cells after irradiation of transplanted C3H mouse mammary tumours, Br. J. Radiol. 42:441.PubMedCrossRefGoogle Scholar
  68. Iliya, F. A., and Azar, H. A., 1967, Radioautographic studies in neoplasia of uterine cervix, Am. J. Obstet. Gynecol. 99:515.PubMedGoogle Scholar
  69. International Atomic Energy Agency Symposium at Monaco, 1968, Effects of Radiation on Cellular Proliferation and Differentiation, IAEA, Vienna.Google Scholar
  70. Kallman, R. F., 1972, The phenomenon of reoxygenation and its implications for fractionated radiotherapy, Radiology 105:135.PubMedGoogle Scholar
  71. Kallman, R. F., Jardine, L. J., and Johnson, C. W., 1970, The effects of different schedules of dose fractionation on the oxygenation status of a transplantable mouse sarcoma, J. Natl. Cancer Inst. 44:369.PubMedGoogle Scholar
  72. Kirk, J., Gray, W. M., and Watson, E. R., 1971, Cumulative radiation effect. 1. Fractionated treatment regimes, Clin. Radiol. 22:145.PubMedCrossRefGoogle Scholar
  73. Laird, A. K., 1964, Dynamics of tumor growth, Br. J. Cancer 18:490.CrossRefGoogle Scholar
  74. Lajtha, L. G., and Oliver, R., 1962, Cell population kinetics following different regimes of irradiation, Br. J. Radiol. 35:131.PubMedCrossRefGoogle Scholar
  75. Lala, P., 1968, Cytokinetic control mechanisms in Ehrlich ascites tumour growth, in: Effects of Radiation on Cellular Proliferation and Differentiation, IAEA, Vienna.Google Scholar
  76. Lamerton, L. F., 1966, Cell proliferation under continuous irradiation, Radiat. Res. 27:119.CrossRefGoogle Scholar
  77. Lesher, S., and Bauman, J., 1968, Recovery of reproductive activity and the maintenance of structural integrity in the mouse intestinal epithelium after single dose whole-body 60Co gamma ray exposures, in: Effects of Radiation on Cellular Proliferation and Differentiation, IAEA, Vienna.Google Scholar
  78. Lesher, S. and Bauman, J., 1969, Cell kinetic studies of the intestinal epithelium: Maintenance of the intestinal epithelium in normal and irradiated animals, Natl. Cancer Inst. Monogr. 30:185.PubMedGoogle Scholar
  79. Lesher, S., Lamerton, L. F., Sacher, G. A., Fry, R. J. M., Steel, G. G., and Roylance, P. J., 1966, Effect of continuous gamma irradiation on the generation cycle of the duodenal crypt cells of the mouse and rat, Radiat. Res. 29:57.PubMedCrossRefGoogle Scholar
  80. Lesher, S., Cooper, J., Hageman, R., and Lesher, J., 1975, Proliferative patterns in the mouse jejunal epithelium after fractionated abdominal X-irradiation, Curr. Top. Radiat. Res. Q. 10:229.PubMedGoogle Scholar
  81. Little, J. B., Hahn, G. M., Frindel, E., and Tubiana, M., 1972, Repair of potentially lethal radiation damage in vitro and in vivo, Radiology 106:689.Google Scholar
  82. Lord, B. L, 1975, The control of cell proliferation in haemopoetic tissue, in: Radiation Research: Biomedical, Chemical, and Physical Perspectives (O. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 826–833, Academic Press, New York.Google Scholar
  83. Lord, B. I., 1976, Stem cell reserve and its control, in: Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 165–180, Academic Press, New York.Google Scholar
  84. Malaise, E. P., Charbit, A., Chavaudra, N., Combes, P. F., Douchez, J., and Tubiana, M., 1972, Change in volume of irradiated human metastases—investigation of repair of sublethal damage and tumour repopulation, Br. J. Cancer 26:43.PubMedCrossRefGoogle Scholar
  85. Malaise, E. P., Chavaudra, N., and Tubiana, M., 1973, The relationship between growth rate, labelling index, and histological type of human solid tumours, Eur. J. Cancer 9:305.PubMedGoogle Scholar
  86. Malaise, E. P., Chavaudra, N., Pêne, F., Richard, J. M., and Tubiana, M., 1975, Cell proliferation kinetics and growth rate of the irradiated human tumors, in: Radiation Research: Biomedical, Chemical, and Physical Perspectives (O. Nygaard, H. I. Adler, and W. K. Sinclair, eds.), pp. 850–856, Academic Press, New York.Google Scholar
  87. Mayneord, W. V., 1932, On a law of growth of Jensen’s rat sarcoma, Am. J. Cancer 16:841.Google Scholar
  88. McNally, N. J., 1975, The effect of an hypoxic cell sensitizer on tumour growth delay and cell survival: Implications for cell survival in situ and in vitro, Br. J. Cancer 32:610.PubMedCrossRefGoogle Scholar
  89. Mendelsohn, M. L., 1965, The kinetics of tumor cell proliferation, in: Cellular Radiation Biology, Williams and Wilkins, Baltimore.Google Scholar
  90. Mottram, J. C., 1913, On the action of beta and gamma rays of radium on the cell in different states of nuclear division, Arch. Middlesex Hosp. 30:98.Google Scholar
  91. Mottram, J. C, Scott, G. M., and Russ, S., 1926, On the effects of beta rays from radium upon division and growth of cancer cells, Proc. R. Soc. London Ser. B 100:326.CrossRefGoogle Scholar
  92. Nelson, J. S. R., Carpenter, R. E., and Durboraw, D., 1976, Mechanisms underlying reduced growth rate in C3HBA mammary adeno-carcinomas recurring after single doses of X-rays or fast neutrons, Cancer Res. 36:524.PubMedGoogle Scholar
  93. Phiillips, T. L., 1966, An ultrastructural study of the development of radiation injury in the lung, Radiology 87:49.Google Scholar
  94. Phillips, T. L., 1969, Observations on heart, lung and kidney after 500–4500 rads from 1 hour to 1 year, in: Carmel Conference on Time-Dose Relationships in Radiation Biology as Applied to Radiotherapy, pp. 194–199, BNL 50203 (C-57).Google Scholar
  95. Porschen, W., and Feinendegen, L. E., 1971, In vivo determination of RBE factors of 15 MeV neutrons for different biological effects in normal tissues and sarcoma 180, using cell labelling with 125IUdR, in: Radiobiological Applications of Neutron Irradiation, pp. 121–134, IAEA, Vienna.Google Scholar
  96. Powers, W. E., and Tolmach, L. J., 1963, A multicomponent X-ray survival curve for mouse lymphoma cells irradiated in vivo, Nature (London) 197:710.CrossRefGoogle Scholar
  97. Rashad, A. L., and Evans, C. A., 1968, Radioautographic study of epidermal cell proliferation and migration in normal and neoplastic tissues of rabbits, J. Natl. Cancer Inst. 41:845.PubMedGoogle Scholar
  98. Reinhold, H. S., 1966, Quantitative evaluation of the radiosensitivity of cells of a transplantable rhabdomyosarcoma in the rat, Eur. J. Cancer 2:33.PubMedGoogle Scholar
  99. Reinhold, H. S., and Buisman, G. H., 1975, Repair of radiation damage to capillary endothelium, Br. J. Radiol. 48:727.PubMedCrossRefGoogle Scholar
  100. Reiskin, A., and Mendelsohn, M. L., 1964, A comparison of the cell cycle in induced carcinoma and their normal counterpart, Cancer Res. 24:1131.PubMedGoogle Scholar
  101. Shipley, W. U., Stanley, J. A., Courtenay, V. D., and Field, S. B., 1975, Repair of radiation damage in Lewis lung carcinoma cells following in situ treatment with fast neutrons and gamma rays, Cancer Res. 35:932.PubMedGoogle Scholar
  102. Simpson-Herren, L., Sanford, A. H., and Holmqvist, J. P., 1974, Cell population kinetics of transplanted and metastatic Lewis lung carcinoma, Cell Tissue Kinet. 7:349.PubMedGoogle Scholar
  103. Sinclair, W. K., 1968, Cyclic X-ray responses in mammalian cells in vitro, Radiat. Res. 33:620.PubMedCrossRefGoogle Scholar
  104. Sinclair, W. K., and Morton, R. A., 1963, Variations in X-ray response during the division cycle of partially synchronised Chinese hamster cells in culture, Nature (London) 199:1158.CrossRefGoogle Scholar
  105. Steel, G. G., 1968, Cell loss from experimental tumours, Cell Tissue Kinet. 1:193.Google Scholar
  106. Steel, G. G., 1972, The cell cycle in tumours: An examination of data gained by the technique of labelled mitoses, Cell Tissue Kinet. 5:87.PubMedGoogle Scholar
  107. Steel, G. G., and Lamerton, L. F., 1966, The growth rate of human tumours, Br. J. Cancer 20:74.PubMedCrossRefGoogle Scholar
  108. Steel, G. G., Adams, K., and Hodgett, J., 1971, Cell population kinetics of a spontaneous rat tumour during serial transplantation, Br. J. Cancer 25:802.PubMedCrossRefGoogle Scholar
  109. Suit, H. D., and Maeda, M., 1967, Hyperbaric oxygen and radiobiology of a C3H mouse mammary carcinoma, J. Natl. Cancer Inst. 39:650.Google Scholar
  110. Szczepanski, L. V., and Trott, K. R., 1975, Post-irradiation proliferation kinetics of a serially transplanted murine adenocarcinoma, Br. J. Radiol. 48:200.PubMedCrossRefGoogle Scholar
  111. Tannock, I. F., 1968, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour, Br. J. Cancer 22:258.PubMedCrossRefGoogle Scholar
  112. Tannock, I. F., 1969, A comparison of cell proliferation parameters in solid and ascites Ehrlich tumors, Cancer Res. 29:1527.PubMedGoogle Scholar
  113. Tannock, I. F., 1970, Population kinetics of carcinoma cells, capillary endothelial cells and fibroblasts in a transplanted mouse mammary tumor, Cancer Res. 30:2470.PubMedGoogle Scholar
  114. Tannock, I. F., and Hayashi, S., 1972, The proliferation of capillary endothelial cells, Cancer Res. 32:77.PubMedGoogle Scholar
  115. Terasima, T., and Tolmach, L. J., 1963, Variations in several responses of HeLa cells to X-irradiation during the division cycle, Biophys. J. 3:11.PubMedCrossRefGoogle Scholar
  116. Thomlinson, R. H., 1968, Changes of oxygenation in tumours, in: Frontiers of Radiation Therapy and Oncology, Vol. 3 (G. Vaeth, ed.), pp. 109–21, Karger, Basel.Google Scholar
  117. Thomlinson, R. H., 1971, The oxygen effect and radiotherapy with fast neutrons, Eur. J. Cancer 7:139.PubMedGoogle Scholar
  118. Thomlinson, R. H., and Craddock, E. A., 1967, The gross response of an experimental tumour to single doses of x-rays, Br. J. Cancer 21:108.PubMedCrossRefGoogle Scholar
  119. Thomlinson, R. H., and Gray, L. H., 1955, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br. J. Cancer 9:539.PubMedCrossRefGoogle Scholar
  120. Thomlinson, R. H., Dische, S., Gray, A. J., and Errington, L. M., 1976, Clinical testing of the radiosensitizer Ro-07–0582. III. Response of tumours, Clin. Radiol. 27:167.PubMedCrossRefGoogle Scholar
  121. Till, J. E., 1976, Regulation of hemopoietic stem cells, in: Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 143–156, Academic Press, New York.Google Scholar
  122. Trentin, J. J., 1976, Hemopoietic inductive micro-environments, in Stem Cells of Renewing Cell Populations (A. B. Cairnie, P. K. Lala, and D. G. Osmond, eds.), pp. 255–264, Academic Press, New York.Google Scholar
  123. Tubiana, M., 1971, Review article: The kinetics of tumour cell proliferation and radiotherapy, Br. J. Radiol. 44:325.PubMedCrossRefGoogle Scholar
  124. Tubiana, M., Frindel, E., and Malaise, E., 1968, The application of radiobiologic knowledge and cellular kinetics to radiation therapy, Am. J. Roentgenol. 102:822.Google Scholar
  125. Tubiana, M., Frindel, E., and Vassort, F., 1975, Critical survey of experimental data on an in vivo synchronization by hydroxyurea, Recent Results Cancer Res. 52:187.PubMedCrossRefGoogle Scholar
  126. Unger, E., and Gidali, J., 1971, Autoradiographic studies on 3H-thymidine incorporation in the liver and kidneys of irradiated mice, Strahlentherapie 141:354.PubMedGoogle Scholar
  127. Urtasun, R., Band, P., Chapman, J. D., Feldstein, M. L., Mielke, B., and Fryer, C., 1976, Radiation and high dose metronidazole (Flagyl) in supratentorial glioblastomas, N. Engl. J. Med. 294:1364.PubMedCrossRefGoogle Scholar
  128. Van den Brenk, H. A. S., Sharpington, C., Orton, C., and Stone, M., 1974, Effects of X-radiation on growth and function of the repair blastema (granulation tissue). II. Measurements of angiogenesis in the Selye pouch in the rat, Int. J. Radiat. Biol. 25:277.CrossRefGoogle Scholar
  129. Van Peperzeel, H. A., 1970, Patterns of tumor growth after irradiation: A comparative study in men, dogs and mice, Ph.D. thesis, University of Amsterdam.Google Scholar
  130. Van Peperzeel, H. A., 1972, Effects of single doses of radiation on lung metastases in man and experimental animals, Eur. J. Cancer 8:665.PubMedGoogle Scholar
  131. Van Putten, L. M., 1968a, Tumour reoxygenation during fractionated radiotherapy; studies with a transplantable mouse osteosarcoma, Eur. J. Cancer 4:173.Google Scholar
  132. Van Putten, L. M., 1968b, Oxygenation and cell kinetics after irradiation in a transplantable osteosarcoma, in: Effects of Radiation on Cellular Proliferation and Differentiation (Proceedings of the Monaco Symposium), pp. 493–505, IAEA, Vienna.Google Scholar
  133. Van Putten, L. M., and Kallman, R. F., 1966, Oxygenation states of a transplantable tumor during fractionated radiotherapy, J. Natl. Cancer Inst. 40:441.Google Scholar
  134. Wara, W. M., Phillips, T. L., Margolis, L. W., and Smith, V., 1973, Radiation pneumonitis; a new approach to the derivation of time dose factors, Cancer 32:547.PubMedCrossRefGoogle Scholar
  135. Watson, J. V., 1976, The cell proliferation kinetics of the EMT6/M/AC mouse tumour at four volumes during unperturbed growth in vivo, Cell Tissue Kinet. 9:147.PubMedGoogle Scholar
  136. Whitmore, G. F., Gulyas, S., and Botond, J., 1965, Radiation sensitivity throughout the cell cycle and its relationship to recovery, in: Cellular Radiation Biology, pp. 423–431, Williams and Wilkins, Baltimore.Google Scholar
  137. Whitmore, G. F., Till, J. E., and Gulyas, G. S., 1967, Radiation induced mitotic delay in L cells, Radiat. Res. 30:155.PubMedCrossRefGoogle Scholar
  138. Winter, G. D., 1971, The poor healing of burns, in: Research on Burns (P. Mather, T. L. Barclay, and Z. Konickova, eds.), pp. 614–619, Huber, Bern.Google Scholar
  139. Withers, H. R., 1967, Recovery and repopulation in vivo by mouse skin epithelial cells during fractionated irradiation, Radiat. Res. 32:227.PubMedCrossRefGoogle Scholar
  140. Withers, H. R., 1975a, Cell cycle redistribution as a factor in multifraction irradiation, Radiology 114:199.PubMedGoogle Scholar
  141. Withers, H. R., 1975b, Iso-effect curves for various proliferative tissues in experimental animals, in: Proceedings of the Madison Conference on Time-Dose Relationships in Clinical Therapy (W. Caldwell and D. D. Tolbert, eds.), pp. 30–38, University of Wisconsin, Madison, Wis.Google Scholar
  142. Withers, H. R., and Elkind, M. M., 1969, Radiosensitivity and fractionation response of crypt cells of mouse jejunum, Radiat. Res. 38:598.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. Denekamp
    • 1
  • J. F. Fowler
    • 1
  1. 1.Gray Laboratory, Cancer Research CampaignMount Vernon HospitalNorthwood, MiddlesexEngland

Personalised recommendations