Contact Inhibition

  • Jan Pontén
Part of the Cancer book series (C, volume 4)

Abstract

Cells which grow attached to a solid substrate can ordinarily both migrate and divide. Normally the two processes can be inhibited by close cell-to-cell contact. The term “contact inhibition,” originally coined to mean only a restraint of locomotion imposed on cells which make contact with each other (Abercrombie and Heaysman, 1954), has also been employed to denote inhibition of mitosis (cf. Stoker and Rubin, 1967). There is no indication that spread of tumors is in any direct way dependent on cell division; however, it seems reasonable to assume that capacity to metastasize is related to the migratory behavior of cells in vitro (cf. Abercrombie and Ambrose, 1962). This chapter will describe contact-dependent control of locomotion of normal and neoplastic cells in vitro and attempt to analyze whether lack of such control mechanisms is related to spread of tumor cells as seen in the living organism.

Keywords

Migration Lymphoma Polysaccharide Retina Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S. A., and Todaro, G. J., 1968, Basis for the acquisition of malignant potential by mouse cells cultivated in vitro, Science 162:1024.PubMedCrossRefGoogle Scholar
  2. Abercrombie, M., 1965, The locomotory behavior of cells, in: Cells and Tissues in Culture (E. N. Willmer, ed.), pp. 177–202, Academic Press, New York.Google Scholar
  3. Abercrombie, M., 1967, Contact inhibition: The phenomenon and its biological implications for orientation of cell movements Natl. Cancer Inst. Monogr. 26:249.PubMedGoogle Scholar
  4. Abercrombie, M., 1970, Contact inhibition in tissue culture, In Vitro 6:128.PubMedCrossRefGoogle Scholar
  5. Abercrombie, M., and Ambrose, E. J., 1958, Interference microscope studies of cell contacts in tissue culture, Exp. Cell Res. 15:332.PubMedCrossRefGoogle Scholar
  6. Abercrombie, M., and Ambrose, E. J., 1962, The surface properties of cancer cells: A review, Cancer Res. 22:525.PubMedGoogle Scholar
  7. Abercrombie, M., and Dunn, G., 1975, Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy, Exptl. Cell Res. 92:57.PubMedCrossRefGoogle Scholar
  8. Abercrombie, M., and Heaysman, J. E. M., 1953, Observations on the social behavior of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts, Exp. Cell Res. 5:111.PubMedCrossRefGoogle Scholar
  9. Abercrombie, M., and Heaysman, J. E. M., 1954, Social behavior of cells in tissue culture. II. “monolayering” of fibroblasts, Exp. Cell Res. 6:293.PubMedCrossRefGoogle Scholar
  10. Abercrombie, M., and Middleton, C. A., 1968, Epithelial-mesenchymal interactions affecting locomotion of cells in culture, in: Epithelial-Mesenchymal Interactions (R. Fleischmajer and R. E. Billingham, eds.), p. 56, Williams and Wilkins, Baltimore.Google Scholar
  11. Abercrombie, M., Heaysman, J. E. M., and Karthauser, H. M., 1957, Social behavior of cells in tissue culture. III. Mutual influences of sarcoma cells and fibroblasts, Exp. Cell Res. 13:276.PubMedCrossRefGoogle Scholar
  12. Abercrombie, M., Heaysman, E. M., and Pegrum, S. M., 1970a, Locomotion of fibroblasts in culture. I. Movements of the leading edge, Exp. Cell Res. 59:393.PubMedCrossRefGoogle Scholar
  13. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970b, The locomotion of fibroblasts in culture. II. “Ruffling,” Exp. Cell Res. 60:437.PubMedCrossRefGoogle Scholar
  14. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970c, The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella, Exp. Cell Res. 62:389.PubMedCrossRefGoogle Scholar
  15. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1971, The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella, Exp. Cell Res. 67:359.PubMedCrossRefGoogle Scholar
  16. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1972, The locomotion of fibroblasts in culture. V. Surface marking with concanavalin A, Exp. Cell Res. 73:536.PubMedCrossRefGoogle Scholar
  17. Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., 1971, Isolation and characterization of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. U.S.A. 68:2703.PubMedCrossRefGoogle Scholar
  18. Albrecht-Bühler, G., 1973, A quantitative difference in the movement of marker particles in the plasma membrane of 3T3 mouse fibroblasts and their polyoma transformants, Exp. Cell Res. 78:67.PubMedCrossRefGoogle Scholar
  19. Allison, A. C., 1973, The role of microfilaments and microtubules inceli movement, endocytosis and exocytosis, in: Locomotion of Tissue Cells (R. Porter and D. W. Fitzsimmons, eds.), Ciba Foundation Symposium 14, pp. 109–148, Elsevier, Excerpta Medica, North-Holland, Amsterdam.Google Scholar
  20. Allison, A. C., Davies, P., and DE Petris, S., 1971, Role of contractile microfilaments in macrophage movement and endocytosis, Nature New Biol. 232:153.PubMedGoogle Scholar
  21. Ambrose, E. J., Batzdorf, U., Osborn, J. S., and Stuart, P. R., 1970, Sub-surface structures in normal and malignant cells, Nature (London) 227:397.CrossRefGoogle Scholar
  22. Aoki, T., Hämmerling, V., DE Harven, E., Boyse, E. A., and Old, L. J., 1969, Antigenic structure of cell surfaces: An immunoferritin study of the occurrence and topography of H-21, and TL alloantigens on mouse cells, J. Exp. Med. 130:979.PubMedCrossRefGoogle Scholar
  23. Barski, G., and Belehradek, J., 1965, Étude microinématographique du méchanisme d’invasion cancéreuse en cultures de tissu normal associé aux cellules malignes, Exp. Cell Res. 37:464.PubMedCrossRefGoogle Scholar
  24. Barski, G., and Belehradek, J., 1965, Étude microinématographique du méchanisme d’invasion cancéreuse en cultures de tissu normal associé aux cellules malignes, Exp. Cell Res. 37:464.PubMedCrossRefGoogle Scholar
  25. Behnke, O., 1970, Microtubules in disk-shaped blood cells, Int. Rev. Exp. Pathol. 9:1.PubMedGoogle Scholar
  26. Bell, P. B., 1974, Movement, contact behavior and morphology of 3T3 and polyoma-transformed 3T3 mouse fibroblasts in culture—A comparative study, doctoral dissertation, Yale University.Google Scholar
  27. Bennett, H. S., 1963, Morphological aspects of extracellular polysaccharides, J. Histochem. Cytochem. 11:14.CrossRefGoogle Scholar
  28. Benyesh-Melnick, M., Fernbach, D. J., and Lewis, R. T., 1963, Studies on human leukemia. I. Spontaneous lymphoblastoid transformation of fibroblastic bone marrow cultures derived from leukemic and nonleukemic children, J. Natl. Cancer Inst. 31:1311.PubMedGoogle Scholar
  29. Berlin, R. D., and Ukena, T. E., 1972, Effect of colchicine and vinblastine on the agglutination of polymorphonuclear leucocytes by concanavalin A, Nature New Biol. 238:120.PubMedCrossRefGoogle Scholar
  30. Bernfield, M. R. AND Wessells, N. K., 1970, Intra-and extracellular control of epithelial morphogenesis, Devl Biol. Suppl. 4:195.Google Scholar
  31. Berry, L. J., and Spies, T. D., 1949, Phagocytosis, Medicine 28:239.PubMedCrossRefGoogle Scholar
  32. Bettex-Galland, M., and Lüscher, E. F., 1965, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Protein Chem. 20:1.PubMedCrossRefGoogle Scholar
  33. Boyde, A., Grainger, F., and Jones, D. W., 1969, Scanning electron microscopic observations of chick embryo fibroblasts in vitro, with particular reference to the movement of cells under others, Z. Zellforsch. Mikrosk. Anat. 94:46.PubMedCrossRefGoogle Scholar
  34. Bray, D., 1973, Cytoplasmic actin: A comparative study, Cold Spring Harbor Symp. Quant. Biol. 37:567.CrossRefGoogle Scholar
  35. Bretscher, M., 1972, Major human erythrocyte glycoprotein spans the cell membrane, Nature New Biol. 231:229.Google Scholar
  36. Brunk, U., Ericsson, J., Pontén, J., and Westermark, B., 1971, Specialization of cell surfaces in contact inhibited, human glia-like cells in vitro, Exp. Cell Res. 67:407.PubMedCrossRefGoogle Scholar
  37. Buckley, I. K., 1974, Subcellular motility: A correlated light and electron microscopic study using cultured cells, Tissue Cell 6:1.PubMedCrossRefGoogle Scholar
  38. Buckley, I. K., and Porter, K. R., 1967, Cytoplasmic fibrils in living cultured cells: A light and electron microscope study, Protoplasma 64:349.PubMedCrossRefGoogle Scholar
  39. Carter, S. B., 1965, Principles of cell motility: The direction of cell movement and cancer invasion, Nature (London) 208:1183.CrossRefGoogle Scholar
  40. Carter, S. B., 1967, Haptotaxis and the mechanism of cell motility, Nature (London) 213:256.CrossRefGoogle Scholar
  41. Clarkson, B., Strife, A., and DE Harven, E., 1967, Continuous culture of seven new cell lines (SK-L1 to 7) from patients with acute leukemia, Cancer 20:926.PubMedCrossRefGoogle Scholar
  42. Congdon, E. D., 1915, The identification of tissues in artificial cultures, Anat. Rec. 9:343.CrossRefGoogle Scholar
  43. Crawford, B., Cloney, R. A., and Cahn, R. D., 1972, Cloned pigmented retinal cells: The effects of cytochalasin B on ultrastructure and behavior, Z. Zellforsch. Mikrosk. Anat. 130:135.PubMedCrossRefGoogle Scholar
  44. Curtis, A. S. G., 1961, Control of some cell-contact reactions in tissue culture, J. Natl. Cancer Inst. 26:253.PubMedGoogle Scholar
  45. Daniels, M. P., 1968, Colchicine inhibition of nerve process elongation in vitro, J. Cell Biol. 39:31.Google Scholar
  46. Daniels, M. P., 1972, Colchicine inhibition of nerve fiber formation in vitro, J. Cell Biol. 53:164.PubMedCrossRefGoogle Scholar
  47. DE Petris, S., and Raff, M. C., 1973, Fluidity of the plasma membrane and its implications for cell movement, in: Locomotion of Tissue Cells (R. Porter and D. W. Fitzsimons, ed.), pp. 27–52, Ciba Foundation Symposium, Associated Scientific Publishers, Amsterdam.Google Scholar
  48. Dermer, G. D., Lue, J., and Neustein, H. B., 1974, Comparison of surface material, cytoplasmic filaments, and intercellular junctions from untransformed and two mouse sarcoma virus-transformed cell lines, Cancer Res. 34:31.PubMedGoogle Scholar
  49. Dipaolo, J. A., Takano, K., and Popescu, N. C., 1972, Quantitation of chemically induced neoplastic transformation of BALB/3T3 cloned cell lines, Cancer Res. 32:2686.PubMedGoogle Scholar
  50. Dipasquale, A., 1973, An analysis of the contact behavior and locomotion of epithelial cells in vitro, doctoral dissertation, Yale University.Google Scholar
  51. Dipasquale, A., and Bell, P. B., 1974, The upper cell surface: Its inability to support active cell movement in culture, J. Cell Biol. 62:198.PubMedCrossRefGoogle Scholar
  52. Dunn, G. A., 1973, Extension of nerve fibres, their mutual interaction and direction of growth in tissue culture, in: Locomotion of Tissue Cells (R. Porter and D. W. Fitzsimons, eds.), pp. 211–232, Associated Scientific Publishers, Amsterdam.Google Scholar
  53. Earle, W. R., 1943, Production of malignancy in vitro. IV. The mouse fibroblasts, cultures and changes seen in the living cells, J. Natl. Cancer Inst. 4:165.Google Scholar
  54. Edelman, G. M., and Wang, J. L., 1974, The cell surface-membrane complex in cell interactions, International Workshop on Cell Surfaces and Malignancy, Fogarthy International Center, National Institute of Health, Bethesda, Md., September 11–13.Google Scholar
  55. Edelman, G. M., Yahara, I., and Wang, J. L., 1973, Receptor mobility and receptor cytoplasmic, interactions in lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 70:1442.PubMedCrossRefGoogle Scholar
  56. Edidin, M., and Weiss, A., 1972, Antigen cap formation in cultured fibroblasts: a reflection of membrane fluidity and of cell motility, Proc. Natl. Acad. Sci. U.S.A. 69:2456.PubMedCrossRefGoogle Scholar
  57. Eguchi, G., and Okada, T. S., 1971, Ultrastructure of the differentiated cell colony derived from a singly isolated chondrocyte in in vitro culture, Dev. Growth Differ. 12:297.PubMedCrossRefGoogle Scholar
  58. Elsdale, T., and Bard, J., 1972, Collagen substrata for studies on cell behavior, J. Cell Biol. 54:626.PubMedCrossRefGoogle Scholar
  59. Elsdale, T., and Foley, R., 1969, Morphogenetic aspects of multilayering in Petri dish cultures of human fetal lung fibroblasts, J. Cell Biol. 41:298.PubMedCrossRefGoogle Scholar
  60. Gail, M. H., and Boone, C. W., 1971, Effector colcemid on fibroblast motility, Exp. Cell Res. 65:221.PubMedCrossRefGoogle Scholar
  61. Gasic, G., and Berwick, L., 1962, Hela stain for acid containing mucins: Adaptation to electron microscopy, J. Cell Biol. 19:223.CrossRefGoogle Scholar
  62. Gey, G. O., Gey, M. K., Firor, W. M., and Self, W. O., 1949, Cultural and cytologic studies on autologous normal and malignant cells of specific in vitro origin, Acta Unio Int. Contra Cancrum 6:706.Google Scholar
  63. Goldman, R. D., and Follett, E. A. C., 1969, The structure of the major cell processes of isolated BHK-21 fibroblasts. Exp. Cell Res. 57:263.PubMedCrossRefGoogle Scholar
  64. Goldman, R., and Knipe, D., 1972, Functions of cytoplasmic fibers in non-muscle cell motility, Cold Spring Harbor Symp. Quant. Biol. 37:523.CrossRefGoogle Scholar
  65. Goldman, R. D., Berg, G., Bushnell, A., Chang, C.-M., Dickerman, L., Hopkins, N., Miller, M. L., Pollack, R., and Wang, E., 1973, Fibrillar systems in cell motility, in: Locomotion of Tissue Cells (R. Porter and D. W. Fitzsimmons, eds.), pp. 83–107, Associated Scientific Publishers, Amsterdam.Google Scholar
  66. Goldstein, M. N., 1954, Formation of giant cells from human mono-cytes cultivated on cellophane, Anat. Rec. 118:577.PubMedCrossRefGoogle Scholar
  67. Groeschel-Stewart, U., 1971, Comparative studies of human smooth and striated muscle myosins, Biochem. Biophys. Acta 229:322.CrossRefGoogle Scholar
  68. Harris, H., 1953, Chemotaxis of monocytes, Br. J. Exp. Pathol. 34:276.PubMedGoogle Scholar
  69. Harris, A. K., 1973a, Cell surface movements related to cell locomotion, in: Locomotion of Tissue Cells (R. Porter and D. W. Fitzsimons, eds.), pp. 3–26, Associated Scientific Publishers, Amsterdam.Google Scholar
  70. Harris, A. K., 1973b, Location of cellular adhesions to solid substrata, Dev. Biol. 35:97.PubMedCrossRefGoogle Scholar
  71. Harris, A. K., and Dunn, G., 1972, Centripetal transport of attached particles on both surfaces of moving fibroblasts, Exp. Cell Res. 73:519.PubMedCrossRefGoogle Scholar
  72. Harrison, R. G., 1910, The outgrowth of nerve fiber as a mode of protoplasmic movement, J. Exp. Zool. 9:787.CrossRefGoogle Scholar
  73. Hayflick, L., and Moorhead, P. S., 1961, The serial cultivation of human diploid cell strains, Exp. Cell Res. 25:585.PubMedCrossRefGoogle Scholar
  74. Heaysman, J. E. M., 1970, Non-reciprocal contact inhibition, Experientia 26:1344.PubMedCrossRefGoogle Scholar
  75. Heaysman, J. E. M., and Pegrum, S. M., 1973, Early contacts between fibroblasts, Exp. Cell Res. 78:71.PubMedCrossRefGoogle Scholar
  76. Heidelberger, C., 1973, Chemical oncogenesis in culture, Adv. Cancer Res. 18:317.PubMedCrossRefGoogle Scholar
  77. Holley, R. W., and Kiernan, J. A., 1968, “Contact inhibition” of cell division in 3T3 cells, Proc. Natl. Acad. Sci. U.S.A. 60:300.PubMedCrossRefGoogle Scholar
  78. Huxley, H. E., 1969, The mechanism of muscular contraction, Science 164:1356.PubMedCrossRefGoogle Scholar
  79. Ingram, V. M., 1969, A side view of moving fibroblasts, Nature (London) 222:641.CrossRefGoogle Scholar
  80. Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43:312.PubMedCrossRefGoogle Scholar
  81. Jacoby, F., 1938, On the identity of blood monocytes and tissue macrophages; their growth rates in vitro, J. Physiol. (London) 93:48.Google Scholar
  82. Jacoby, F., 1965, Macrophages, in: Cells and Tissues in Culture (E. N. Willmer, ed.), pp. 1–93, Academic Press, New York.Google Scholar
  83. Lasfargi E., and Delaunay, A., 1947, Nouvelles recherches sur le tactisme des macrophages in vitro, Ann. Inst. Pasteur 73:14.Google Scholar
  84. Lazarides, E., 1975, Tropomyosin antibody: The specific localization of tropomyosin in nonmuscle cells, J. Cell Biol. 65:549.PubMedCrossRefGoogle Scholar
  85. Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin fibers in nonmuscle cells, Proc. Natl. Acad. Sci U.S.A. 71:2268.PubMedCrossRefGoogle Scholar
  86. Lewis, C. T., and Lewis, M. R., 1924, Behavior of cells in tissue cultures, in: General Cytology (E. W. Cowdry, ed.), pp. 383–447, University of Chicago Press, Chicago.Google Scholar
  87. Lewis, W. H., and Webster, L. T., 1921, Wandering cells, endothelial cells, and fibroblasts in cultures from human lymph nodes, J. Exp. Med. 34:397.PubMedCrossRefGoogle Scholar
  88. Loeb, L., 1921, Ameboid movement, tissue formation and consistency of protoplasm, Am. J. Physiol. 56:140.Google Scholar
  89. Macpherson, I., and Stoker, M., 1962, Polyoma transformation of hamster cell clones—An investigation of genetic factors affecting cell competence, Virology 16:147.PubMedCrossRefGoogle Scholar
  90. Martz, E., 1973, Contact inhibition of speed in 3T3 and its independence from postconfluence inhibition of cell division, J. Celt. Physiol. 81:39.CrossRefGoogle Scholar
  91. Mcnutt, N. S., Culp, L. A., and Black, P. H., 1971, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study, J. Cell Biol. 50:691.PubMedCrossRefGoogle Scholar
  92. Mcnutt, N. S., Culp, L. A., and Black, P. H., 1973, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb/c 3T3 cells, J. Cell Biol. 56:412.PubMedCrossRefGoogle Scholar
  93. Middleton, C. A., 1972, Contact inhibition of locomotion in cultures of pigmented retina epithelium, Exp. Cell Res. 70:91.PubMedCrossRefGoogle Scholar
  94. Middleton, C. A., 1973, The control of epithelial cell locomotion in tissue culture, in: Locomotion of Tissue Cells (R. Porter and D. W. Fitzsimons, eds.), pp. 251–270, Associated Scientific Publishers, Amsterdam.Google Scholar
  95. Miranda, A. F., Godman, G. C., and Tanenbaum, S., 1974, Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments, J. Cell Biol. 62:406.PubMedCrossRefGoogle Scholar
  96. Montagnier, L., and Macpherson, I., 1964, Croissance selective en gelose de cellules de hamster transformées par le virus du polyome, C. R. Acad. Sci. 258:4171.Google Scholar
  97. Moore, G. E., and Minowada, J., 1969, Human hemapoietic cell lines: A progress report, Hemic Cells in Vitro 4:100.CrossRefGoogle Scholar
  98. Moscona, A. A., 1974, Surface specification of embryonic cells: Lectin receptors, cell recognition, and specific cell ligands, in: The Cell Surface in Development (A. A. Moscona, ed.), pp. 67–99, Wiley, New York.Google Scholar
  99. Neville, D. M., Jr., and Kahn, C. R., 1974, Isolation of plasma membranes for cell surface membrane receptor studies, in: Methods in Molecular Biology, Vol. 5: Subcellular Particles Structures and Organelles (A. I. Laskin and J. A. Last, eds.), pp. 57–88, Dekker, New York.Google Scholar
  100. Nicholson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles, J. Cell Biol. 59:395.CrossRefGoogle Scholar
  101. Nilsson, K., 1971, High frequency establishment of immunoglobulin producing lymphoblastoid cell lines from normal and malignant lymphoid tissue and peripheral blood, Int. J. Cancer 8:432.PubMedGoogle Scholar
  102. Nilsson, K., and Pontén, J., 1975, Classification and biological nature of established human hematopoietic cell lines, Int. J. Cancer (in press).Google Scholar
  103. Nilsson, K., Nilsson, L., and Pontén, J., 1970, Lymphocytes are mobile (film), Third International Conference on Lymphatic Tissue and Germinal Centers in Immune Reactions, Uppsala.Google Scholar
  104. Oldfield, F. E., 1963, Orientation behavior of chick leucocytes in tissue culture and their interactions with fibroblasts, Exp. Cell Res. 30:125.PubMedCrossRefGoogle Scholar
  105. Philipson, L., and Pontén, J., 1967, Immunoglobulin synthesis in long term cultures of lymph nodes from Hodgkin’s disease, Life Sci. 6:2635.PubMedCrossRefGoogle Scholar
  106. Pollack, R., Osborn, M., and Wever, K., 1974, Patterns of organization of actin and myosin in normal and transformed nonmuscle cells: Immunofluorescence—contraction/SV40/ achorage/microfilaments, J. Cell Biol, (in press).Google Scholar
  107. Pollard, T. D., and Weihing, R. R., 1974, Cytoplasmic actin and myosin and cell movement, in: Critical Reviews in Biochemistry, Vol. 2, pp. 1–65, (G. D. Fasman, ed.), CRC Press, Cleveland.Google Scholar
  108. Pontén, J., 1971, Spontaneous and Virus Induced Transformation in Cell Culture (S. Gard, C. Hallauer, and K. F. Meyer, eds.), Springer, New York.CrossRefGoogle Scholar
  109. Pontén, J., and Macintyre, E. H., 1968, Long term culture of normal and neoplastic human glia, Acta Pathol. Microbiol. Scand. 74:465.PubMedCrossRefGoogle Scholar
  110. Pontén, J., Westermark, B., and Hugosson, R., 1969, Regulation of proliferation and movement of human glia-like cells in culture, Exp. Cell Res. 58:393.PubMedCrossRefGoogle Scholar
  111. Porter, K. R., 1966, Cytoplasmic microtubules and their functions, in: Principles of Biomolecular Organization (G. E. W. Wolstenholme, and M. O’Connor, eds.), pp. 308–345, Churchill, London.Google Scholar
  112. Pulvertaft, R. J., 1959, Cellular associations in normal and abnormal lymphocytes, Proc. R. Soc. Med. 52:315.PubMedGoogle Scholar
  113. Revel, J. P., 1974, Scanning electron microscope studies of cell surface morphology and labeling, in situ and in vitro, in: Scanning Electron Microscopy (O. Johari and I. Corvin, eds.), pp. 542–548.Google Scholar
  114. Revel, J. P., Hoch, P., and Ho, D., 1974, Adhesion of culture cells to their substratum, Exptl. Cell Res. 84:207.PubMedCrossRefGoogle Scholar
  115. Rubin, H., 1960, The suppression of morphological alterations in cells infected with Rouse sarcoma virus, Virology 12:14.PubMedCrossRefGoogle Scholar
  116. Rubin, H., 1962, Response of cell and organism to infection with avian tumor viruses, Bacteriol. Rev. 26:1.PubMedGoogle Scholar
  117. Rutishauser, U., Yahara, I., and Edelman, G. M., 1974, Morphology, motility and surf ace behavior of lymphocytes bound to nylon fibers, Proc. Natl. Acad. Sci. U.S.A. 71:1149.PubMedCrossRefGoogle Scholar
  118. Sanford, K. K., Likely, G. D., and Earle, W. R., 1954, The development of variations in transplantability and morphology within a clone of mouse fibroblasts transformed to sarcoma-producing cells in vitro, J. Natl. Cancer Inst. 15:215.PubMedGoogle Scholar
  119. Santesson, L., 1935, Characteristics of epithelial mouse tumour cells in tuiroand tumour strains in vivo, Acta Pathol. Microbiol. Scand. Suppl. 24:1.Google Scholar
  120. Schroeder, T. E., 1970, The contractile ring. 1. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B, Z. Zellforsch. Mikrosk. Anat. 109:431.PubMedCrossRefGoogle Scholar
  121. Singer, S. J., and Nicholson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedCrossRefGoogle Scholar
  122. Spooner, B. S., Yamada, K. M., and Wessells, N. K., 1971, Microfilaments and cell locomotion, J. Cell Biol. 49:595.PubMedCrossRefGoogle Scholar
  123. Spooner, B. S., Ash, J. F., Wrenn, J. T., Frater, R. B., and Wessells, N. K., 1973, Heavy meromyosin binding to microfilaments involved in cell and morphogenetic movements, Tissue Cell 5:37.PubMedCrossRefGoogle Scholar
  124. Stoker, M., 1962, Characteristics of normal and transformed clones arising from BHK21 cells exposed to polyoma virus, Virology 18:649.PubMedCrossRefGoogle Scholar
  125. Stoker, M., 1973, Role of diffusion boundary layer in contact inhibition of growth, Nature (London) 246:200.CrossRefGoogle Scholar
  126. Stoker, M., and Macpherson, I., 1961, Studies on transformation of hamster cells by polyoma virus in vitro, Virology 14:359.CrossRefGoogle Scholar
  127. Stoker, M., and Rubin, H., 1967, Density dependent inhibition of cell growth in culture, Nature (London) 215:171.CrossRefGoogle Scholar
  128. Stossel, T. P., and Pollard, T. D., 1973, Myosin in polymorphnuclear leukocytes, J. Biol. Chem. 248:8288.PubMedGoogle Scholar
  129. Stracher, A., and Dreizen, P., 1966, Structure and function of the contractile protein myosin, in: Current Topics in Bioenergetics, Vol. 1 (D. R. Sandai, ed.), p. 154, Academic Press, New York.Google Scholar
  130. Tanigaki, N., Yagi, Y., Moore, G. E., and Pressman, D., 1966, Immunoglobulin production in human leukemia cell lines, J. Immunol. 97:634.PubMedGoogle Scholar
  131. Taylor, R. G., Duffus, P. H., Raff, M. C., and DE Petris, S., 1971, Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody, Nature New Biol. 233:225.PubMedCrossRefGoogle Scholar
  132. Temin, H. M., 1960, The control of cellular morphology in embryonic cells infected with Rous sarcoma virus in vitro, Virology 10:182.PubMedCrossRefGoogle Scholar
  133. Temin, H. M., and Rubin, H., 1958, Characteristics of an assay of Rous sarcoma virus and Rous sarcoma cells in tissue culture, Virology 6:669.PubMedCrossRefGoogle Scholar
  134. Tenenbaum, E., and Doljanski, L., 1943, Studies on Rous sarcoma cells cultivated in vitro: Morphological properties of Rous sarcoma cells, Cancer Res. 3:585.Google Scholar
  135. Todaro, G. J., and Green, H., 1963, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines, J. Cell Biol. 17:299.PubMedCrossRefGoogle Scholar
  136. Todaro, G. J., and Green, H., 1964, An assay for cellular transformation by SV40, Virology 23:117.CrossRefGoogle Scholar
  137. Todaro, G. J., and Green, H., 1965, Successive transformations of an established cell line by polyoma virus and SV40, Science 14:513.CrossRefGoogle Scholar
  138. Todaro, G. J., and Green, H., 1966, High frequency of SV40 transformation of mouse cell line 3T3, Virology 28:756.PubMedCrossRefGoogle Scholar
  139. Todaro, G. J., Green, H., and Goldberg, B. D., 1964, Transformation of properties of an established cell line by SV40 and polyoma virus, Proc. Natl. Acad. Sci. U.S.A. 51:66.PubMedCrossRefGoogle Scholar
  140. Todaro, G. J., Lazar, G. K., and Green, H., 1965, The initiation of cell division in a contact inhibited mammalian cell line, J. Cell. Comp. Physiol. 66:325.CrossRefGoogle Scholar
  141. Trevan, D. J., and Roberts, D. C., 1960, Sheet information by cells of an ascites tumour in vitro, Br. J. Cancer 14:724.PubMedCrossRefGoogle Scholar
  142. Uhlenhuth, E., 1915, The form of the epithelial cells in culture of frog skin, and its relation to the consistency of the medium, J. Exp. Med. 22:76.PubMedCrossRefGoogle Scholar
  143. Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., and Rappoport, R. I., 1969, Wound healing processes in cell cultures, Exp. Cell Res. 54:83.PubMedCrossRefGoogle Scholar
  144. Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., Ivanova, O. Y., Komm, S. G., and Olshevskaja, L. V., 1970, Effect of colcemic on the locomotory behaviour of fibroblasts, J. Embryol. Morphol. 24:625.Google Scholar
  145. Vaughan, R. B., and Trinkaus, J. P., 1966, Movements of epithelial cell sheets in vitro, J. Cell Sci. 1:407.PubMedGoogle Scholar
  146. Veselý, P., and Weiss, A., 1973, Cell locomotion and contact inhibition of normal and neoplastic rat cells, Int. J. Cancer 1:64.CrossRefGoogle Scholar
  147. Veselý, P., Donner, L., Cinati, J., and Sovova, V., 1968, Interaction of Rous sarcoma virus with rat embryo fibroblasts of inbred Lewis strain in vitro, Folia Biol. 14:457.Google Scholar
  148. Vogt, M., and Dulbecco, R., 1962, Properties of cells transformed by polyoma virus, Cold Spring Harbor Symp. Quant. 27:367.CrossRefGoogle Scholar
  149. Weber, K., and Groeschel-Stewart, U., 1974, Myosin antibody: The specific visualization of myosin containing filaments in nonmuscle cells, Proc. Natl. Acad. Sci. U.S.A. 71:4561.PubMedCrossRefGoogle Scholar
  150. Weed, R. L., Lacelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48:795.PubMedCrossRefGoogle Scholar
  151. Weiss, P., 1934, In vitro experiments on the factors determining the course of the outgrowing nerve fibre, J. Exp. Zool. 68:393.CrossRefGoogle Scholar
  152. Weiss, L., 1961, The measurement of cell adhesion, Exp. Cell Res. Suppl. 8:141.CrossRefGoogle Scholar
  153. Weiss, L., 1967, The Cell Periphery: Metastasis and Other Contact Phenomena, North-Holland, Amsterdam.Google Scholar
  154. Wessells, N. K., Spooner, D. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171:135.PubMedCrossRefGoogle Scholar
  155. Wessells, N. K., Spooner, B. S., and Luduena, M. A., 1973, Surface movements, microfilaments and cell locomotion, in: Locomotion of Tissue Cells (R. Porter and D. W. Fitzsimons, eds.), pp. 53–82, Ciba Foundation Symposium 14, Associated Scientific Publishers, Amsterdam.Google Scholar
  156. Westermark, B., 1973a, Growth control of normal and neoplastic human glia-like cells in culture Acta Universitatis Upsaliensis, Abstracts of Uppsala Dissertations in Medicine, 164.Google Scholar
  157. Westermark, B., 1973b, Growth regulatory interactions between stationary human glia-like cells and normal and neoplastic cells in culture. I. Normal cells, Exp. Cell Res. 81:195.PubMedCrossRefGoogle Scholar
  158. Weston, J. A., and Hendricks, K. L., 1972, Reversible transformation by urea of contact-inhibited fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 69:3727.PubMedCrossRefGoogle Scholar
  159. Weston, J. A., and Roth, S. A., 1969, Contact inhibition: Behavioral manifestation of cellular adhesive properties in vitro, in: Cellular Recognition (R. T. Smith and R. A. Good, eds.), Appleton-Century-Crofts, New York.Google Scholar
  160. Wilbanks, G. D., and Richart, R. M., 1966, The in vitro interaction of intraepithelial neoplasia, normal epithelium and fibroblasts from the adult human uterine cervix, Cancer Res. 26:1641.PubMedGoogle Scholar
  161. Yahara, I., and Edelman, G. M., 1972, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A, Proc. Natl. Acad. Sci. U.S.A. 69:608.PubMedCrossRefGoogle Scholar
  162. Yahara, I., and Edelman, G. M., 1974, Modulation of lymphocyte receptor mobility by concanavalin A and colchicine, Ann. N.Y. Acad. Sci. (in press).Google Scholar
  163. Yamada, K. M., and Wessells, N. K., 1971, Axon elongation: Effect of nerve growth factor on microtubule protein, Exp. Cell Res. 49:614.Google Scholar
  164. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1970, Axon growth: Roles of microfilaments and microtubules, Proc. Natl. Acad. Sci. U.S.A. 66:1206.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Jan Pontén
    • 1
  1. 1.The Wallenberg LaboratoryUniversity of UppsalaUppsalaSweden

Personalised recommendations