Plant Tumors

  • Armin C. Braun
Part of the Cancer book series (C, volume 4)


The neoplastic diseases of plants have not only had a long and interesting history but also have, over the years, served as model systems for studying the basic cellular mechanisms that underlie the tumorous state. The crown gall disease of plants was, for example, the first neoplastic disease in which the proximate cause was characterized experimentally (Smith and Townsend, 1907), a finding that preceded by 1 year the report of Ellermann and Bang (1908) on the transmissibility of fowl leukemia and by 3 years the report of Rous (1910) on the production of solid tumors in chickens with cell-free filtrates. Plant tumors were also among the earliest shown to be transplantable. Shortly after the turn of the century, C. O. Jensen—who because of his now classic investigations on the transplantability of first mouse and later rat cancers is generally considered to be the father of modern experimental cancer research—also demonstrated that the plant tumors with which he worked were transplantable (Jensen, 1910, 1918). He stated, moreover, that those plant tumors “remind one so much of malignant tumors in animals that a closer study of their biological relationships would undoubtedly be profitable” (Jensen, 1910). In comparing plant and animal tumors it must be recognized, however, that there are certain structural and functional differences commonly used to distinguish cancers in animals that are more or less restricted to animals. However, the most essential characteristic, namely, the ability of a cell to grow in an essentially unrestrained or autonomous manner in a host, on which all other diagnostic features ultimately depend, is equally capable of expression in all higher organisms since it is a characteristic feature of the cell itself. While differences in particulars clearly exist, plants can nevertheless be legitimately used as experimental test objects for attempts to uncover fundamental concepts that lead to an understanding of neoplastic growth generally.


Tumorous State Tracheary Element Crown Gall High Plant Species Normal Cell Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaron-DaCunha, M. I., 1969, Sur la liberation, par les rayons X, d’un principe tumorigène contenu dans les tissus de crown gall de tabac, C. R. Acad. Sci. Paris Ser. D 268:318.Google Scholar
  2. Basile, D. V., Wood, H. N., and Braun, A. C., 1973, Programming of cells for death under defined experimental conditions: Relevance to the tumor problem, Proc. Natl. Acad. Sci. U.S.A. 70:3055.PubMedCrossRefGoogle Scholar
  3. Binns, A., and Meins, F., Jr., 1973, Habituation of tobacco pith cells for factors promoting cell division is heritable and potentially reversible, Proc. Natl. Acad. Sci. U.S.A. 70:2660.PubMedCrossRefGoogle Scholar
  4. Bloch-Shtacher, N., Rabinowitz, Z., and Sachs, L., 1972, Chromosomal mechanism for the induction of reversion in transformed cells, Int. J. Cancer 9:632.PubMedCrossRefGoogle Scholar
  5. Braun, A. C., 1943, Studies on tumor inception in the crown-gall disease, Am. J. Bot. 30:674.CrossRefGoogle Scholar
  6. Braun, A. C., 1947, Thermal studies on the factors responsible for tumor initiation in crown gall, Am. J. Bot. 34:234.PubMedCrossRefGoogle Scholar
  7. Braun, A. C., 1951, Cellular autonomy in crown gall, Phytopathology 41:963.Google Scholar
  8. Braun, A. C., 1952, Conditioning of the host cell as a factor in the transformation process in crown gall, Growth 16:65.PubMedGoogle Scholar
  9. Braun, A. C., 1953, Bacterial and host factors concerned in determining tumor morphology in crown gall, Bot. Gaz. 114:363.CrossRefGoogle Scholar
  10. Braun, A. C., 1956, The activation of two growth-substance systems accompanying the conversion of normal to tumor cells in crown gall, Cancer Res. 16:53.PubMedGoogle Scholar
  11. Braun, A. C., 1958, A physiological basis for autonomous growth of the crown-gall tumor cell, Proc. Natl. Acad. Sci. U.S.A. 44:344.PubMedCrossRefGoogle Scholar
  12. Braun, A. C., 1959, A demonstration of the recovery of the crown-gall tumor cell with the use of complex tumors of single-cell origin, Proc. Natl. Acad. Sci. U.S.A. 45:932.PubMedCrossRefGoogle Scholar
  13. Braun, A. C., guest editor, 1972, Plant Tumor Research, Vol. 15 of Progress in Experimental Tumor Research, 235 pp., Karger, Basel.Google Scholar
  14. Braun, A. C., 1975, The cell cycle and tumorigenesis in plants, Results and Problems in Cell Differentiation, Vol. 7, The Celi Cycle and Cell Differentiation, (J. Reinert and H. Holtzer, eds.), pp. 177–196, Springer, Berlin.Google Scholar
  15. Braun, A. C., and Mandle, R. J., 1948, Studies on the inactivation of the tumor-inducing principle in crown gall, Growth 12:255.PubMedGoogle Scholar
  16. Braun, A. C., and Naf, U., 1954, A non-auxinic growth-promoting factor present in crown gall tumor tissue, Proc. Soc. Exp. Biol. Med. 86:212.PubMedGoogle Scholar
  17. Braun, A. C., and Wood, H. N., 1962, On the activation of certain essential biosynthetic systems in cells of Vinca rosea L., Proc. Natl. Acad. Sci. U.S.A. 48:1776.PubMedCrossRefGoogle Scholar
  18. Carlson, P. S., Smith, H. H., and Dearing, R. D., 1972, Parasexual interspecific plant hybridization, Proc. Natl. Acad. Sci. U.S.A. 69:2292.PubMedCrossRefGoogle Scholar
  19. Dalessandro, G., and Roberts, L. W., 1971, Induction of xylogenesis in pith parenchyma explants of Lactuca, Am. J. Bot. 58:378.CrossRefGoogle Scholar
  20. Das, N. K., Patau, K., and Skoog, F., 1958, Autoradiographic and microspectrophotometric studies of DNA synthesis in excised tobacco pith tissue, Chromosoma 9:606.PubMedCrossRefGoogle Scholar
  21. de Ropp, R. S., 1947, The growth-promoting and tumefacient factors of bacteria-free crown-gall tumor tissue, Am. J. Bot. 34:248.CrossRefGoogle Scholar
  22. Ellermann, V., and Bang, O., 1908, Experimentelle Leukämie bei Hühnern, Zentralbl. Bakteriol. Parasitenkd. Abt. 1: Orig. 46:595.Google Scholar
  23. Goldmann, A., Thomas, D. W., and Morel, G., 1969, Sur la structure de la nopaline métabolite anormal de certaines tumeurs de crown-gall, C. R. Acad. Sci. Paris Ser. D 268:852.Google Scholar
  24. Gordon, M., 1958, A genetic concept for the origin of melanomas, Ann. N.Y. Acad. Sci. 71:1213.PubMedCrossRefGoogle Scholar
  25. Hall, R. H., 1970, N 6-(Δ2-Isopentenyl) adenosine: Chemical reactions, biosynthesis, metabolism, and significance to the structure and function of tRNA, Prog. Nucleic Acid Res. Mol. Biol. 10:57.PubMedCrossRefGoogle Scholar
  26. Jablonski, J. R., and Skoog, F., 1954, Cell enlargement and cell division in excised tobacco pith tissue, Physiol. Plant. 7:16.CrossRefGoogle Scholar
  27. Jensen, C. O., 1910, Von echten Geschwülsten bei Pflanzen, in: Deuxième Conférence Internationale pour l’Etude du Cancer, Tenue a Paris du Ler au 5 Octobre 1910, pp. 243–254, Félix Alcan, Éditeur, Paris.Google Scholar
  28. Jensen, C. O., 1918, Undersøgelser vedrørende nogle svulstlignende dannelser hos planter, K. Vet. Landbohoejsk. Aarsskr. 1918:91.Google Scholar
  29. Letham, D. S., 1963, Zeatin, a factor inducing cell division isolated from Zea mays, Life Sci. 2:569.CrossRefGoogle Scholar
  30. Limasset, P., and Gautheret, R., 1950, Sur le caractère tumoral des tissus de tabac ayant subi le phénomène d’accoutumance aux hétèro-auxines, C. R. Acad. Sci. Paris 230:2043.Google Scholar
  31. Lioret, C., 1956, Sur la mise en évidence d’un acide aminé non identifié particulier aux tissus de “crown-gall”, Bull. Soc. Fr. Physiol. Vég. 2:76.Google Scholar
  32. Lipetz, J., 1966, Crown gall tumorigenesis. II. Relations between wound healing and the tumorigenic response, Cancer Res. 26:1597.PubMedGoogle Scholar
  33. Little, C. C., 1947, The genetics of cancer in mice, Biol. Rev. Cambridge Philos. Soc. 22:315.PubMedCrossRefGoogle Scholar
  34. Lundeen, C. V., Wood, H. N., and Braun, A. C., 1973, Intracellular levels of cyclic nucleotides during cell enlargement and cell division in excised tobacco pith tissues, Differentiation 1:255.CrossRefGoogle Scholar
  35. Lutz, A., 1971, Morphogenetic aptitudes of tissue cultures of unicellular origin, in: Colloq. Internat. Centre Nat. Recherche Sci (Paris), No. 193, Les Cultures de Tissus de Plantes (Proceedings of the Second International Conference Plant Tissue Culture, Strasbourg, France, July 6–10, 1970), pp. 163–168, Centre National de la Recherche Scientifique, Paris.Google Scholar
  36. Mazia, D., 1961, Mitosis and the physiology of cell division, in: The Cell, Vol. 3, (J. Brachet and A. E. Mirsky, eds.), pp. 77–412, Academic Press, New York.Google Scholar
  37. Meins, F., Jr., 1973, Evidence for the presence of a readily transmissible oncogenic principle in crown gall teratoma cells of tobacco, Differentiation 1:21.CrossRefGoogle Scholar
  38. Ménagé, A., AND Morel, G., 1965, Sur la présence d’un acide aminé nouveau dans les tissus de crown-gall, C. R. Acad. Sci. Paris 261:2001.Google Scholar
  39. Miller, C. O., Skoog, F., Okumura, F. S., von Saltza, M. H., and Strong, F. M., 1956, Isolation, structure and synthesis of kinetin, a substance promoting cell division, J. Am. Chem. Soc. 78:1375.CrossRefGoogle Scholar
  40. Muneyama, K., Bauer, R. J., Shuman, D. A., Robins, R. K., and Simon, L. N., 1971, Chemical synthesis and biological activity of 8-substituted adenosine 3′,5′-cyclic monophosphate derivatives, Biochemistry 10:2390.PubMedCrossRefGoogle Scholar
  41. Rous, P., 1910, A transmissible avian neoplasm (sarcoma of the common fowl), J. Exp. Med. 12:696.PubMedCrossRefGoogle Scholar
  42. Shodell, M., 1972, Environmental stimuli in the progression of BHK/21 cells through the cell cycle, Proc. Natl. Acad. Sci. U.S.A. 69:1455.PubMedCrossRefGoogle Scholar
  43. Simard, A., 1971, Initiation of DNA synthesis by kinetin and experimental factors in tobacco pith tissues in vitro, Can. J. Bot. 49:1541.CrossRefGoogle Scholar
  44. Smith, E. F., and Townsend, C. O., 1907, A plant-tumor of bacterial origin, Science 25:671.PubMedCrossRefGoogle Scholar
  45. Smith, H. H., 1972, Plant genetic tumors, Prog. Exp. Tumor. Res. 15:138.PubMedGoogle Scholar
  46. Steward, F. C., Mapes, M. O., Kent, A. E., and Holsten, R. D., 1964, Growth and development of cultured plant cells, Science 143:20.PubMedCrossRefGoogle Scholar
  47. Vasil, V., and Hildebrandt, A. C., 1965, Differentiation of tobacco plants from single, isolated cells in microcultures, Science 150:889.PubMedCrossRefGoogle Scholar
  48. Wood, H. N., and Braun, A. C., 1961, Studies on the regulation of certain essential biosynthetic systems in normal and crown-gall tumor cells, Proc. Natl. Acad. Sci. U.S.A. 47:1907.PubMedCrossRefGoogle Scholar
  49. Wood, H. N., and Braun, A. C., 1965, Studies on the net uptake of solutes by normal and crown-gall tumor cells, Proc. Natl. Acad. Sci. U.S.A. 54:1532.PubMedCrossRefGoogle Scholar
  50. Wood, H. N., and Braun, A. C., 1967, The role of kinetin (6-furfurylaminopurine) in promoting division in cells of Vinca rosea L., Ann. N.Y. Acad. Sci. 144:244.CrossRefGoogle Scholar
  51. Wood, H. N., and Braun, A. C., 1973, 8-Bromoadenosine 3′: 5′-cyclic monophosphate as a promoter of cell division in excised tobacco pith parenchyma tissue, Proc. Natl. Acad. Sci. U.S.A. 70:447.PubMedCrossRefGoogle Scholar
  52. Wood, H. N., Lin, M. C., and Braun, A. C., 1972, The inhibition of plant and animal adenosine 3′: 5′-cyclic monophosphate phosphodiesterases by a cell-division-promoting substance from tissues of higher plant species, Proc. Natl. Acad. Sci. U.S.A. 69:403.PubMedCrossRefGoogle Scholar
  53. Wood, H. N., Rennekamp, M. E., Bowen, D. V., Field, F. H., and Braun, A. C., 1974, A comparative study of cytokinesins I and II and zeatin riboside: a reply to Carlos Miller, Proc. Natl. Acad. Sci. U.S.A. 71:4140.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Armin C. Braun
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations