Surfaces of Normal and Transformed Cells

  • James C. Robbins
  • Garth L. Nicolson
Part of the Cancer book series (C, volume 4)


Considerable data implicate events at the cell surface as having a primary role in the growth, development, and communication of normal animal cells and in the multiplication of cancer cells. For example, surface changes are of particular relevance in determining whether neoplastic cells provoke a host immune response and whether they survive or succumb to that response. Surface characteristics are also at least partially involved in the ability of cancer cells both to establish a primary growth site and to metastasize to secondary sites. A variety of additional factors are involved in each case, but progress in distinguishing neoplastic from normal cell surfaces will surely help to understand and to combat the development and growth of neoplastic cells.


Sialic Acid Cold Spring Harbor Cold Spring Harbor Laboratory Wheat Germ Agglutinin Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell, C. W., and Monahan, T. M., 1973, The role of adenosine 3′,5′-cyclic monophosphate in the regulation of mammalian cell division, J. Cell Biol. 59:549.PubMedCrossRefGoogle Scholar
  2. Ambrose, E. J., James, A. M., and Lowick, J. H. B., 1956, Differences between the electrical charge carried by normal and homologous tumour cells, Nature (London) 177:576.CrossRefGoogle Scholar
  3. Arndt-Jovin, D. J., and Berg, P., 1971, Quantitative binding of 125I-concanavalin A to normal and transformed cells, J. Virol. 8:716.PubMedGoogle Scholar
  4. Aub, J. C., Tieslau, C., and Lankester, A., 1963, Reaction of normal and tumor cell surfaces to enzymes. I. Wheat-germ lipase and associated mucopolysaccharides, Proc. Natl. Acad. Sci. U.S.A. 50:613.PubMedCrossRefGoogle Scholar
  5. Aub, J. C., Sanford, B. H., and Cote, M. N., 1965a, Studies on reactivity of tumor and normal cells to a wheat germ agglutinin, Proc. Natl. Acad. Sci. U.S.A. 54:396.PubMedCrossRefGoogle Scholar
  6. Aub, J. C., Sanford, B. H., and Wang, L., 1965b, Reactions of normal and leukemic cell surfaces to a wheat germ agglutinin, Proc. Natl. Acad. Sci. U.S.A. 54:400.PubMedCrossRefGoogle Scholar
  7. Avruch, J., and Fairbanks, G., 1972, Demonstration of a phosphopeptide intermediate in the Mg++-dependent, Na+-and K+-stimulated adenosine triphosphate reaction of the erythrocyte membrane, Proc. Natl. Acad. Sci. U.S.A. 69:1216.PubMedCrossRefGoogle Scholar
  8. Baker, J. B., and Humphreys, T., 1972, Turnover of molecules which maintain the normal surfaces of contact-inhibited cells, Science 175:905.PubMedCrossRefGoogle Scholar
  9. Bannai, S., and Sheppard, J. R., 1974, Cyclic AMP, ATP and cell contact, Nature (London) 250:62.CrossRefGoogle Scholar
  10. Barbarese, E., Sauerwein, H., and Simkins, H., 1973, Alteration in the surface glycoproteins of chick erythrocytes following transformation with erythroblastosis strain R virus, J. Membr. Biol. 13:129.PubMedCrossRefGoogle Scholar
  11. Barker, S. A., Stacey, M., Tipper, D. J., and Kirkham, J. H., 1959, Some observations on certain mucoproteins containing neuraminic acid, Nature (London) 184:BA68.Google Scholar
  12. Bender, W. W., Garan, H., and Berg, H. C., 1971, Proteins of the human erythrocyte membrane as modified by pronase, J. Mol. Biol. 58:783.PubMedCrossRefGoogle Scholar
  13. Benedetti, E. L., and Emmelot, P., 1967, Studies on plasma membranes. IV. The ultrastructural localization and content of sialic acid in plasma membranes isolated from rat liver and hepatoma, J. Cell Sci. 2:499.PubMedGoogle Scholar
  14. Berlin, R. D., 1972, Effect of concanavalin A on phagocytosis, Nature New Biol. 235:44.PubMedCrossRefGoogle Scholar
  15. Berlin, R. D., and Ukena, T. E., 1972, Effect of colchicine and vinblastine on the agglutination of polymorphonuclear leucocytes by concanavalin A, Nature New Biol. 238:120.PubMedCrossRefGoogle Scholar
  16. Black, P. N., 1968, The oncogenic DNA viruses: A review of in vitro transformation studies, Ann. Rev. Microbiol. 22:391.CrossRefGoogle Scholar
  17. Blasie, J. K., and Worthington, C. R., 1969, Planar liquid-like arrangement of photopigment molecules in frog retinal receptor disk membrane, J. Mol. Biol. 39:417.PubMedCrossRefGoogle Scholar
  18. Blaurock, A. E., 1971, Structure of the nerve myelin membrane: Proof of the low-resolution profile, J. Mol. Biol. 56:35.PubMedCrossRefGoogle Scholar
  19. Borek, C., Grob, M., and Burger, M. M., 1973, Surface alterations in transformed epithelial and fibroblastic cells in culture: A disturbance of membrane degradation versus biosynthesis? Exp. Cell Res. 77:207.PubMedCrossRefGoogle Scholar
  20. Bosmann, H. B., 1972a, Elevated glycosidases and proteolytic enzymes in cells transformed by RNA tumor virus, Biochim. Biophys. Acta 264:339.PubMedCrossRefGoogle Scholar
  21. Bosmann, H. B., 1972b, Cell surface glycosyl transferases and acceptors in normal and RNA-and DNA-virus transformed fibroblasts, Biochem. Biophys. Res. Commun. 48:523.PubMedCrossRefGoogle Scholar
  22. Bosmann, H. B., 1972c, Sialyl transferase activity in normal and RNA-and DNA-virus transformed cells utilizing desialyzed, trypsinized cell plasma membrane external surface glycoproteins as exogenous acceptors, Biochem. Biophys. Res. Commun. 49:1256.PubMedCrossRefGoogle Scholar
  23. Bosmann, H. B., and Hall, T. C., 1974, Enzyme activity in invasive tumors of human breast and colon, Proc. Natl. Acad. Sci. U.S.A. 71:1833.PubMedCrossRefGoogle Scholar
  24. Bosmann, H. B., Case, K. R., and Morgan, H. R., 1974a, Surface biochemical changes accompanying primary infection with Rous sarcoma virus. I. Electrokinetic properties of cells and cell surface glycoprotein: glycosyltransferase activities, Exp. Cell Res. 83:15.PubMedCrossRefGoogle Scholar
  25. Bosmann, H. B., Lockwood, T., and Morgan, H. R., 1974b, Surface biochemical changes accompanying primary infection with Rous sarcoma virus. II. Proteolytic and glycosidase activity and sublethal autolysis, Exp. Cell Res. 83:25.PubMedCrossRefGoogle Scholar
  26. Boyse, E., 1973, Immunogenetics in the study of cell surfaces: Some implications for morphogenesis and cancer, in: Current Research in Oncology (C. Anfinsen, M. Potter, and A. Schechter, eds.), pp. 57–94, Academic Press, New York.Google Scholar
  27. Brady, R. O., and Fishman, P. H., 1974, Biosynthesis of glycolipids in virus-transformed cells, Biochim. Biophys. Acta 355:121.PubMedGoogle Scholar
  28. Brady, R. O., Fishman, P. H., and Mora, P. T., 1973, Membrane components and enzymes in virally transformed cells, Fed. Proc. 32:102.PubMedGoogle Scholar
  29. Bretscher, M. S., 1971a, Human erythrocyte membranes: Specific labeling of surface proteins, J. Mol. Biol. 58:775.PubMedCrossRefGoogle Scholar
  30. Bretscher, M. S., 1971b, Major protein which spans the human erythrocyte membrane, J. Mol. Biol. 59:351.PubMedCrossRefGoogle Scholar
  31. Bretscher, M. S., 1971c, Major human erythrocyte glycoprotein spans the cell membrane, Nature New Biol. 231:229.PubMedCrossRefGoogle Scholar
  32. Bretscher, M. S., 1972, Phosphatidyl-ethanolamine: Differential labeling in intact cells of human erythrocytes by a membrane impermeable reagent, J. Mol. Biol. 71:523.PubMedCrossRefGoogle Scholar
  33. Bretscher, M. S., 1973, Membrane structure: Some general principles. Membranes are asymmetric lipid bilayers in which cytoplasmically synthesized proteins are dissolved, Science 181:622.PubMedCrossRefGoogle Scholar
  34. Bretton, R., Wicker, R., and Bernhard, W., 1972, Ultrastructural localization of concanavalin A receptors in normal and SV40-transformed hamster and rat cells, Int. J. Cancer 10:397.PubMedCrossRefGoogle Scholar
  35. Bryant, M. L., Stoner, G. D., and Metzger, R. P., 1974, Protein-bound carbohydrate content of normal and tumorous human lung tissue, Biochim. Biophys. Acta 343:226.PubMedCrossRefGoogle Scholar
  36. Buck, C. A., Glick, M. C., and Warren, L., 1970, A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells, Biochemistry 9:4567.PubMedCrossRefGoogle Scholar
  37. Buckman, T., and Weber, M. J., 1975, Spin labeling investigations of membrane alterations in chick embryo fibroblasts transformed by Rous sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. (in press).Google Scholar
  38. Burger, M. M., 1969, A difference in the architecture of the surface membrane of normal and virally transformed cells, Proc. Natl. Acad. Sci. U.S.A. 62:994.PubMedCrossRefGoogle Scholar
  39. Burger, M. M., 1970, Proteolytic enzymes initiating cell division and escape from contact inhibition of growth, Nature (London) 227:170.CrossRefGoogle Scholar
  40. Burger, M. M., 1971, Forssman antigen exposed on surface membrane after viral transformation, Nature New Biol. 231:125.PubMedCrossRefGoogle Scholar
  41. Burger, M. M., 1973, Surface changes in transformed cells detected by lectins, Fed. Proc. 32:91.PubMedGoogle Scholar
  42. Burger, M. M., and Goldberg, A. R., 1967, Identification of a tumor specific determinant on neoplastic cell surfaces, Proc. Natl. Acad. Sci. U.S.A. 57:359.PubMedCrossRefGoogle Scholar
  43. Bussell, R. H., and Robinson, W. S., 1973, Membrane proteins of uninfected and Rous sarcoma virus-transformed avian cells, J. Virol. 12:320.PubMedGoogle Scholar
  44. Butel, J. S., Tevethia, S. S., and Melnick, J. L., 1972, Oncogenicity and cell transformation by papovavirus SV40: The role of the viral genome, Adv. Cancer Res. 15:1.PubMedCrossRefGoogle Scholar
  45. Cabantchik, Z. I., and Rothstein, A., 1972, The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives, J. Membr. Biol. 10:311.PubMedCrossRefGoogle Scholar
  46. Capaldi, R. A., and Green, D. E., 1972, Membrane proteins and membrane structure, FEBS Lett. 25:205.PubMedCrossRefGoogle Scholar
  47. Carter, J. R., Jr., Avruch, J., and Martin, D. B., 1973, Glucose transport by trypsin-treated red blood cell ghosts, Biochim. Biophys. Acta 291:506.PubMedCrossRefGoogle Scholar
  48. Chen, L. B., and Buchanan, J. M., 1975, Plasminogen-independent fibrinolysis by proteases produced by transformed chick embryo fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 72:1132.PubMedCrossRefGoogle Scholar
  49. Chiarugi, V. P., and Urbano, P., 1972, Electrophoretic analysis of membrane glycoproteins in normal and polyoma virus transformed BHK21 cells, J. Gen. Virol. 14:133.PubMedCrossRefGoogle Scholar
  50. Chiarugi, V. P., Vannucchi, S., and Urbano, P., 1974, Exposure of trypsin-removable sulphated polyanions on the surface of normal and virally transformed BHK21/c13 cells, Biochim. Biophys. Acta 345:283.CrossRefGoogle Scholar
  51. Chipowsky, S., Lee, Y. C., and Roseman, S., 1973, Adhesion of cultured fibroblasts to insoluble analogues of cell-surface carbohydrates, Proc. Natl. Acad. Sci. U.S.A. 70:2309.PubMedCrossRefGoogle Scholar
  52. Chou, I.-N., Black, P. H., and Roblin, R. O., 1974a, Non-selective inhibition of transformed cell growth by a protease inhibitor, Proc. Natl. Acad. Sci. U.S.A. 71:1748.PubMedCrossRefGoogle Scholar
  53. Chou, I.-N., Black, P. H., and Roblin, R. O., 1974b, Suppression of fibrinolysin T activity fails to restore density-dependent growth inhibition to SV3T3 cells, Nature (London) 250:739.CrossRefGoogle Scholar
  54. Chou, I.-N., Black, P. H., and Roblin, R. O., 1974c, Effects of protease inhibitors on growth of 3T3 and SV3T3 cells, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 339–350, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  55. Christensen Lou, H. O., Clausen, J., and Bierring, F., 1965, Phospholipids and glycolipids of tumours in the central nervous system, J. Neurochem. 12:619.CrossRefGoogle Scholar
  56. Christman, J. K., and Acs, G., 1974, Purification and characterization of a cellular fibrinolytic factor associated with oncogenic transformation: The plasminogen activator from SV-40-transformed hamster cells, Biochim. Biophys. Acta 340:339.PubMedCrossRefGoogle Scholar
  57. Clarke, M., 1971, Isolation and characterization of a water-soluble protein from bovine erythrocyte membranes, Biochem. Biophys. Res. Commun. 45:1063.PubMedCrossRefGoogle Scholar
  58. Clarkson, B., and Baserga, R., eds., 1974, Control of Proliferation in Animal Cells, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  59. Cline, M. J., and Livingston, D. C., 1971, Binding of 3H-concanavalin A by normal and transformed cells, Nature New Biol. 232:155.PubMedGoogle Scholar
  60. Coggin, J. H., and Anderson, N. G., 1974, Cancer, differentiation and embryonic antigens: Some central problems, Adv. Cancer Res. 19:105.PubMedCrossRefGoogle Scholar
  61. Coman, D. R., 1944, Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas, Cancer Res. 4:625.Google Scholar
  62. Comoglio, P. M., and Filogamo, G., 1973, Plasma membrane fluidity and surface motility of mouse C-1300 neuroblastoma cells, J. Cell Sci. 13:415.PubMedGoogle Scholar
  63. Comoglio, P. M., and Guglielmone, R., 1972, Two dimensional distribution of concanavalin A receptor molecules on fibroblast and lymphocyte plasma membranes, FEBS Lett. 27:256.PubMedCrossRefGoogle Scholar
  64. Cooper, A. G., Codington, J. F., and Brown, M. C., 1974, In vivo release of glycoprotein I from the Ha subline of TA3 murine tumor into ascites fluid and serum, Proc. Natl. Acad. Sci. U.S.A. 71:1224.PubMedCrossRefGoogle Scholar
  65. Critchley, D. R., 1974, Cell surface proteins of NIL 1 hamster fibroblasts labeled by a galactose oxidase, tritrated borohydride method, Cell 3:121.PubMedCrossRefGoogle Scholar
  66. Critchley, D. R., and Macpherson, I., 1973, Cell density dependent glycolipids in NIL2 hamster cells, derived malignant and transformed cell lines, Biochim. Biophys. Acta 296:145.PubMedCrossRefGoogle Scholar
  67. Cuatrecasas, P., 1973, Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells, Biochemistry 12:1312.PubMedCrossRefGoogle Scholar
  68. Cumar, F. A., Brady, R. O., Kolodny, E. H., Mcfarland, V. W., and Mora, P. T., 1970, Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines, Proc. Natl. Acad. Sci. U.S.A. 67:757.PubMedCrossRefGoogle Scholar
  69. Cunningham, D. D., and Pardee, A. B., 1969, Transport changes rapidly initiated by serum addition to “contact inhibited” 3T3 cells, Proc. Natl. Acad. Sci. U.S.A. 64:1049.PubMedCrossRefGoogle Scholar
  70. Curtis, A. S. G., 1967, The Cell Surface, Academic Press, New York.Google Scholar
  71. Curtis, A. S. G., and Greaves, M. F., 1965, The inhibition of cell aggregation by a pure serum protein, J. Embryol. Exp. Morphol. 13:309.PubMedGoogle Scholar
  72. Danielli, J. F., and Davson, H., 1935, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5:495.CrossRefGoogle Scholar
  73. Davis, W. C., 1972, H-2 antigen on cell membranes: An explanation for the alternation of distribution by indirect labeling techniques, Science 175:1006.PubMedCrossRefGoogle Scholar
  74. Defendi, V., and Gasic, G., 1963, Surface mucopolysaccharides of polyoma virus transformed cells, J. Cell Comp. Physiol. 62:23.CrossRefGoogle Scholar
  75. Den, H., Schultz, A. M., Basu, M., and Roseman, S., 1971, Glycosyl transferase activities in normal and polyoma-transformed BHK cells, J. Biol. Chem. 246:2721.PubMedGoogle Scholar
  76. Den, H., Sela, B.-A., Roseman, S., and Sachs, L., 1974, Blocks in ganglioside synthesis in transformed hamster cells and their revertants, J. Biol. Chem. 249:659.PubMedGoogle Scholar
  77. Dent, P. B., and Hillcoat, B. L., 1972, Interaction of phytohemagglutinins and concanavalin A with transplantable mouse lymphomas of differing malignant potential, J. Natl. Cancer Inst. 49:373.PubMedGoogle Scholar
  78. DE Petris, S., and Raff, M. C., 1972, Distribution of immunoglobulin on the surface of mouse lymphoid cells as determined by immunoferritin electron microscopy: Antibody-induced, temperature-dependent redistribution and its implications for membrane structure, Eur. J. Immunol. 2:523.PubMedCrossRefGoogle Scholar
  79. DE Petris, S., and Raff, M. C., 1973, Normal distribution, patching and capping of lymphocyte surface immunoglobulin studied by electron microscopy, Nature New Biol. 241:257.PubMedGoogle Scholar
  80. Deppert, W., Werchau, H., and Walter, G., 1974, Differentiation between intracellular and cell surface glycosyl transferases: Galactosyl transferase activity in intact cells and in cell homogenate, Proc. Natl. Acad. Sci. U.S.A. 71:3068.PubMedCrossRefGoogle Scholar
  81. Dievard, J. C., and Bourrillon, R., 1974, Séparation et purification des sites récepteurs de la lectine del Robinia et le concanavaline A, présents á la surface des cellules hépatiques normales et tumorales (hépatome de zajdéla), Biochim. Biophys. Acta 345:198.PubMedCrossRefGoogle Scholar
  82. Diringer, H., Ströbel, G., and Koch, M. A., 1972, Glycolipids of mouse fibroblasts and virus-transformed mouse cell lines, Hopp-Seylers Z. Physiol. Chem. 353:1769.CrossRefGoogle Scholar
  83. Doljanski, F., and Eisenberg, S., 1963, The action of neuraminidase on the electrophoretic mobility of liver cells, in: Cell Electrophoresis (E. J. Ambrose, ed.), pp. 78–84, Churchill, London.Google Scholar
  84. Dorsey, J. K., and Roth, S., 1973, Adhesive specificity of normal and transformed mouse fibroblasts, Dev. Biol. 33:249.PubMedCrossRefGoogle Scholar
  85. Dorsey, J. K., and Roth, S., 1974, The effect of polyprenols on cell surface galactosyltransferase activity, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 533–539, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  86. Dresden, M. H., Heilman, S. A., and Schmidt, J. D., 1972, Collagenolytic enzymes in human neoplasms, Cancer Res. 32:993.PubMedGoogle Scholar
  87. Edelman, G. M., Yahara, I., and Wang, J. L., 1973, Receptor mobility and receptor-cytoplasmic interactions in lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 70:1442.PubMedCrossRefGoogle Scholar
  88. Edidin, M., and Fambrough, D., 1973, Fluidity of the surface of cultured cell muscle fibers: Rapid lateral diffusion of marked surface antigens, J. Cell Biol. 57:27.PubMedCrossRefGoogle Scholar
  89. Edidin, M., and Weiss, A., 1972, Antigen cap formation in cultured fibroblasts: A reflection of membrane fluidity and of cell motility, Proc. Natl. Acad. Sci. U.S.A. 69:2456.PubMedCrossRefGoogle Scholar
  90. Edidin, M., and Weiss, A., 1974, Restriction of antigen mobility in the plasma membranes of some cultured fibroblasts, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 213–220, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  91. Elgsaeter, A., and Branton, G., 1974, Intramembrane particle aggregation in erythrocyte ghosts. I. The effect of protein removal, J. Cell Biol. 63:1018.PubMedCrossRefGoogle Scholar
  92. Engelman, D. M., 1970, X-ray diffraction studies of phase transitions in the membrane of Mycoplasma laidlawaii, J. Mol. Biol. 47:115.PubMedCrossRefGoogle Scholar
  93. Eylar, E. H., Madoff, M. A., Brody, O. V., and Oncley, J. L., 1962, The contribution of sialic acid to the surface charge of the erythrocyte, J. Biol. Chem. 237:1992.PubMedGoogle Scholar
  94. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10:2606.PubMedCrossRefGoogle Scholar
  95. Fidler, I. J., 1973, Selection of successive tumor lines for metastasis, Nature New Biol. 242:148.PubMedGoogle Scholar
  96. Figard, P. H., and Levine, A. S., 1966, Incorporation of labeled precursors into lipids of tumors induced by Rous sarcoma virus, Biochim. Biophys. Acta 125:428.PubMedCrossRefGoogle Scholar
  97. Findlay, J. B. C., 1974, The receptor proteins for concanavalin A and Lens culinaris phytohemaggluti-nin in the membrane of the human erythrocyte, J. Biol. Chem. 249:4398.PubMedGoogle Scholar
  98. Fishman, P. H., Brady, R. O., Bradley, R. M., Aaronson, S. A., and Todaro, G. J., 1974, Absence of a specific ganglioside galactosyltransferase in mouse cells transformed by murine sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 71:298.PubMedCrossRefGoogle Scholar
  99. Forrester, J. A., 1963, Microelectrophoresis of normal and polyoma virus transformed hamster kidney fibrblasts, in: Cell Electrophoresis (E. J. Ambrose, ed.), pp. 115–124, Churchill, London.Google Scholar
  100. Foster, D. O., and Pardee, A. B., 1969, Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips, J. Biol. Chem. 244:2675.PubMedGoogle Scholar
  101. Fox, C. F., 1975, Phase transitions in model systems and membranes, MTP Int. Rev. Sci. Biochem. 2:279.Google Scholar
  102. Francois, D., Vu-Van, T., Febvre, H., and Haguenau, F., 1972, Electron microscope study of the fixation of lectins labelled with Raifort peroxidase on human embryonic cells transformed in vitro by the Rous sarcoma virus (RSV), Bryan strain, C. R. Acad. Sci. Ser. D 274:1981.Google Scholar
  103. Frye, L. D., and Edidin, M., 1970, The rapid inter-mixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7:319.PubMedGoogle Scholar
  104. Fuhrmann, G. F., 1963, Selective effects of neuraminidase on cell surfaces, in: Cell Electrophoresis (E. J. Ambrose, ed.), pp. 85–91, Churchill, London.Google Scholar
  105. Gaffney, B. J., 1975, Fatty acid chain flexibility in membranes of normal and transformed fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 72:664.PubMedCrossRefGoogle Scholar
  106. Gahmberg, C. G., and Hakomori, S., 1973a, Altered growth behavior of malignant cells associated with changes in externally labeled glycoprotein and glycolipid, Proc. Natl. Acad. Sci. U.S.A. 70:3329.PubMedCrossRefGoogle Scholar
  107. Gahmberg, C. G., and Hakomori, S., 1973, External labeling of cell surface galactose and galactosamine in glycolipid and glycoprotein of human erythrocytes, J. Biol. Chem. 248:4311.PubMedGoogle Scholar
  108. Gahmberg, C. G., and Hakomori, S., 1974, Organization of glycolipid and glycoprotein in surface membranes dependency on cell cycle and on transformation, Biochem. Biophys. Res. Commun. 59:283.PubMedCrossRefGoogle Scholar
  109. Gahmberg, C. G., and Hakomori, S., 1975a, Surface carbohydrates of hamster fibroblasts. I. Chemical characterization of surface-labelled glycosphingolipids and a specific ceramide tetrasac-charide for transformants, J. Biol. Chem. 250:2438.PubMedGoogle Scholar
  110. Gahmberg, C. G., and Hakomori, S., 1976, Surface carbohydrates of hamster fibroblasts. II. Interaction of hamster NIL cell surfaces with Ricinus communis lectin and concanavalin A as revealed by surface galactosyllabel, J. Biol. Chem. 250:2447.Google Scholar
  111. Gahmberg, C. G., Utermann, G., and Simons, K., 1972, The membrane proteins of Semliki Forest virus have a hydrophobic part attached to the viral membrane, FEBS Lett. 28:179.PubMedCrossRefGoogle Scholar
  112. Gahmberg, C. G., Kiehn, D., and Hakomori, S., 1974, Changes in a surface-labeled galactoprotein and in glycolipid concentrations in cells transformed by a temperature-sensitive polyoma virus mutant, Nature (London) 248:413.CrossRefGoogle Scholar
  113. Gantt, R. R., Martin, J. R., and Evans, V. J., 1969, Agglutination of in vitro cultured neoplastic cell lines by a wheat germ agglutinin, J. Natl. Cancer Inst. 42:369.PubMedGoogle Scholar
  114. Garber, B. B., and Moscona, A. A., 1972, Reconstruction of brain tissue from cell suspensions. II. Specific enhancement of aggregation of embryonic cerebral cells by supernatant from homologous cell cultures, Dev. Biol 27:235.PubMedCrossRefGoogle Scholar
  115. Garrido, J., Burglen, M., Samolyk, D., Wicker, R., and Bernhard, W., 1974, Ultrastructural comparison between the distribution of concanavalin A and wheat germ agglutinin cell surface receptors of normal and transformed hamster and rat cell lines, Cancer Res. 34:230.PubMedGoogle Scholar
  116. Glaser, M., and Singer, S. J., 1971, Circular dichroism and the conformations of membrane proteins: Studies with RBC membranes, Biochemistry 10:1780.PubMedCrossRefGoogle Scholar
  117. Glaser, M., Simpkins, H., Singer, S. J., Sheetz, M., and Chan, S. I., 1970, On the interaction of lipids and proteins in the red blood cell membrane, Proc. Natl. Acad. Sci. U.S.A. 65:721.PubMedCrossRefGoogle Scholar
  118. Glick, M. C., and Buck, C. A., 1973, Glycoproteins from the surface of metaphase cells, Biochemistry 12:85.PubMedCrossRefGoogle Scholar
  119. Glick, M. C., Rabinowitz, Z., and Sachs, L., 1973, Surface membrane glycopeptides correlated with tumori genesis, Biochemistry 12:4864.PubMedCrossRefGoogle Scholar
  120. Glick, M. C., Rabinowitz, Z., and Sachs, L., 1974, Surface membrane glycopeptides which coincide with virus transformation and tumorigenesis, J. Virol. 13:967.PubMedGoogle Scholar
  121. Glynn, R. D., Thrash, C. R., and Cunningham, D. D., 1973, Maximal concanavalin A-specific agglutinability without loss of density-dependent growth control, Proc. Natl. Acad. Sci. U.S.A. 70:2676.PubMedCrossRefGoogle Scholar
  122. Goetz, I. E., Weinstein, C., and Roberts, E., 1972, Effects of protease inhibitors on growth of hamster tumor cells in culture, Cancer Res. 32:2469.PubMedGoogle Scholar
  123. Goldberg, A. R., 1974, Increased protease levels in transformed cells: A casein overlay assay for the detection of plasminogen activator production, Cell 2:95.PubMedCrossRefGoogle Scholar
  124. Goto, M., Kataoka, Y., Goto, K., Yodoyama, T., and Sato, H., 1972, Decrease in agglutinability of cultured tumor cells to concanavalin A at the plateau of cell growth, Gann 63:505.PubMedGoogle Scholar
  125. Graham, J. M., Hynes, R. O., Davidson, E. A., and Bainton, D. F., 1975, The location of proteins labeled by the 125I-lactoperoxidase system in the NIL 8 hamster fibroblast, Cell 4:353.PubMedCrossRefGoogle Scholar
  126. Green, D. E., Ji, S., and Brucker, R. F., 1973, Structure-function unitization model of biological membranes, Bioenergetics 4:253.CrossRefGoogle Scholar
  127. Greenberg, C. S., and Glick, M. C., 1972, Electrophoretic study of the polypeptides from surface membranes of mammalian cells, Biochemistry 11:3680.PubMedCrossRefGoogle Scholar
  128. Grimes, W. J., 1973, Glycosyl transferase and sialic acid levels of normal and transformed cells, Biochemistry 12:990.PubMedCrossRefGoogle Scholar
  129. Grimes, W. J., 1974, Biological and biochemical characterization of surface changes in normal, MSV-and SV40-transformed, and spontaneously transformed clones of Balb/c cells, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 517–531, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  130. Grimes, W. J., and Schroeder, J. L., 1973, Dibutyryl cyclic adenosine 3′ 5′ monophosphate, sugar transport, and regulatory control of cell division in normal and transformed cells, J. Cell Biol. 56:487.PubMedCrossRefGoogle Scholar
  131. Guidotto, G., 1972, Membrane proteins, Ann. Rev. Biochem. 41:731.CrossRefGoogle Scholar
  132. Guidotti, G., 1973, personal communication.Google Scholar
  133. Hakomori, S., 1970, Cell-density dependent changes of glycolipids in fibroblasts and loss of this response in the transformed cells, Proc. Natl. Acad. Sci. U.S.A. 67:1741.PubMedCrossRefGoogle Scholar
  134. Hakomori, S., 1973, Glycolipids of tumor cell membrane, Adv. Cancer Res. 18:265.PubMedCrossRefGoogle Scholar
  135. Hakomori, S., 1975a, Structures and organization of cell surface glycolipids. Dependency on cell growth and malignant transformation, Biochim. Biophys. Acta 417:55.PubMedGoogle Scholar
  136. Hakomori, S., 1975b, Fucplipids and blood group glycolipids in normal and tumor tissue, Prog. Biochem. Pharmacol, (in press).Google Scholar
  137. Hakomori, S., and Kijimoto, S., 1972, Forssman reactivity and cell contacts in cultured hamster cells, Nature New Biol. 239:87.PubMedCrossRefGoogle Scholar
  138. Hakomori, S., Koscielak, J., Bloch, K. J., and Jeanloz, R. W., 1967, Immunologic relationship between blood group substances and a fucose-containing glycolipid of human adenocarcinoma, J. Immunol. 98:31.PubMedGoogle Scholar
  139. Hakomori, S., Teather, C., and Andrews, H., 1968, Organizational difference of cell surface “hematoside” in normal and virally transformed cells, Biochem. Biophys. Res. Commuti. 33:563.CrossRefGoogle Scholar
  140. Hakomori, S., Saito, T., and Vogt, P. K., 1971, Transformation by Rous sarcoma virus; effects on cellular glycolipids, Virology 44:609.PubMedCrossRefGoogle Scholar
  141. Hakomori, S., Kijimoto, S., and Siddiqui, B., 1972, Glycolipids of normal and transformed cells. A difference in structure and dynamic behavior, in: Membrane Research (C. F. Fox, ed.), pp. 253–277, Academic Press, New York.Google Scholar
  142. Hammarström, S., and Bjursell, G., 1973, Glycolipid synthesis in baby-hamster-kidney fibroblasts transformed by a thermosensitive mutant of polyoma virus, FEBS Lett. 32:69.PubMedCrossRefGoogle Scholar
  143. Hartmann, J. F., Buck, C. A., Defendi, V., Glick, M. C., and Warren, L., 1972, The carbohydrate content of control and virus-transformed cells, J. Cell Physiol. 80:159.PubMedCrossRefGoogle Scholar
  144. Hatanaka, M., 1974, Transport of sugars in tumor cell membranes, Biochim. Biophys. Acta 355:77.PubMedGoogle Scholar
  145. Hausman, R. E., and Moscona, A. A., 1973, Cell-surface interactions: Differential inhibition by proflavine of embryonic cell aggregation and production of specific cell-aggregating factor, Proc. Natl. Acad. Sci. U.S.A. 70:3111.PubMedCrossRefGoogle Scholar
  146. Haven, F. L., and Bloor, W. R., 1956, Lipids in cancer, Adv. Cancer Res. 4:237.PubMedCrossRefGoogle Scholar
  147. Herschman, H. R., 1972, Alterations in membranes of cultured cells as a result of transformation by DNA-containing viruses, in: Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), pp. 471–502, Sinauer Associates, Stamford, Conn.Google Scholar
  148. Hogg, N. M., 1974, A comparison of membrane proteins of normal and transformed cells by lactoperoxidase labeling, Proc. Natl. Acad. Sci. U.S.A. 71:489.PubMedCrossRefGoogle Scholar
  149. Holley, R. W., 1972, A unifying hypothesis concerning the nature of malignant growth, Proc. Natl. Acad. Sci. U.S.A. 69:2840.PubMedCrossRefGoogle Scholar
  150. Holley, R. W., 1974, Serum factors and growth control, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 13–18, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  151. Hovi, T., Keski-Oja, J., and Vaheri, A., 1974, Growth control in chick embryo fibroblasts; no evidence for a specific role for cyclic purine nucleotides, Cell 2:235.PubMedCrossRefGoogle Scholar
  152. Hsie, A. W., and Puck, T. T., 1971, Morphological transformation of Chinese hamster cells by dibutryl adenosine cyclic 3′:5′-monophosphate and testosterone, Proc. Natl. Acad. Sci. U.S.A. 68:358.PubMedCrossRefGoogle Scholar
  153. Hsie, A. W., Jones, C., and Puck, T. T., 1971, Further changes in differentiation state accompanying the conversion of Chinese hamster cells of fibroblastic form by dibutyryl adenosine cyclic 3′:5′-monophosphate and hormones, Proc. Natl. Acad. Sci. U.S.A. 68:1648.PubMedCrossRefGoogle Scholar
  154. Hsu, A.-F., Baynes, J. W., and Heath, E. C., 1974, The role of a dolichololigosaccharide as an intermediate in glycoprotein biosynthesis, Proc. Natl. Acad. Sci. U.S.A. 71:2391.PubMedCrossRefGoogle Scholar
  155. Huang, C.-C., Tsai, C.-M., and Canellakis, E. S., 1974, Iodination of cell membranes. II. Characterization of HeLa cell membrane surface proteins, Biochim. Biophys. Acta 332:59.CrossRefGoogle Scholar
  156. Hubbard, A. L., and Cohn, Z., 1972, Enzymatic iodination of the red cell membrane, J. Cell Biol. 55:390.PubMedCrossRefGoogle Scholar
  157. Hubbell, W. L., and Mcconnell, H. M., 1968, Spin-label studies of the excitable membranes of nerve and muscle, Proc. Natl. Acad. Sci. U.S.A. 61:12.PubMedCrossRefGoogle Scholar
  158. Huet, C., and Bernhard, W., 1974, Differences in the surface mobility between normal and SV40-, polyoma-and adenovirus-transformed hamster cells, Int. J. Cancer 13:227.PubMedCrossRefGoogle Scholar
  159. Hynes, R. O., 1973, Alteration of cell-surface proteins by viral transformation and by proteolysis, Proc. Natl. Acad. Sci. U.S.A. 70:3170.PubMedCrossRefGoogle Scholar
  160. Hynes, R. O., 1974, Role of surface alterations in cell transformation: The importance of proteases and surface proteins, Cell 1:147.CrossRefGoogle Scholar
  161. Hynes, R. O., and Bye, J. M., 1974, Density and cell cycle dependence of cell surface proteins in hamster fibroblasts, Cell 3:113.PubMedCrossRefGoogle Scholar
  162. Hynes, R. O., and Humphreys, K. C., 1974, Characterization of the external proteins of hamster fibroblasts, J. Cell Biol. 62:438.PubMedCrossRefGoogle Scholar
  163. Inbar, M., and Sachs, L., 1973, Mobility of carbohydrate containing sites on the surface membrane in relation to the control of cell growth, FEBS Lett. 32:124.PubMedCrossRefGoogle Scholar
  164. Inbar, M., and Shinitzky, M., 1974, Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumor development, Proc. Natl. Acad. Sci. U.S.A. 71:2128.PubMedCrossRefGoogle Scholar
  165. Inbar, M., Ben-Bassat, H., and Sachs, L., 1971, A specific metabolic activity on the surface membrane in malignant cell-transformation, Proc. Natl. Acad. Sci. U.S.A. 68:2748.PubMedCrossRefGoogle Scholar
  166. Inbar, M., Ben-Bassat, H., and Sachs, L., 1972, Membrane changes associated with malignancy, Nature New Biol. 236:3.PubMedGoogle Scholar
  167. Inbar, M., Ben-Bassat, H., Huet, C., Oseroff, A. R., and Sachs, L., 1973, Inhibition of lectin agglutinability by fixation of the cell surface membrane, Biochim. Biophys. Acta 311:594.PubMedCrossRefGoogle Scholar
  168. Ishimoto, N., Temin, H. M., and Strominger, J. L., 1966, Studies of carcinogenesis by avian sarcoma viruses. II. Virus-induced increase in hyaluronic acid synthetase in chicken fibroblasts, J. Biol. Chem. 241:2052.PubMedGoogle Scholar
  169. Isselbacher, K. J., 1972, Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture, Proc. Natl. Acad. Sci. U.S.A. 69:585.PubMedCrossRefGoogle Scholar
  170. Ito, A., and Sato, R., 1968, Purification by means of detergents and properties of cytochrome b 5 from liver microsomes, J. Biol. Chem. 243:4922.PubMedGoogle Scholar
  171. Jansons, V. K., and Burger, M. M., 1973, Isolation and characterization of agglutinin receptor sites. II. Isolation and partial purification of a surface membrane receptor for wheat germ agglutinin, Biochim. Biophys. Acta 291:127.PubMedCrossRefGoogle Scholar
  172. Ji., T. H., 1973, Crosslinking sialoglycoproteins of human erythrocyte membranes, Biochem. Biophys. Res. Commun. 53:508.PubMedCrossRefGoogle Scholar
  173. Ji., T. H., 1974, Cross-linking of the glycoproteins in human erythrocyte, Proc. Natl. Acad. Sci. U.S.A. 71:93.PubMedCrossRefGoogle Scholar
  174. Ji., T. H., and Nicolson, G. L., 1974, Lectin binding and perturbation of the cell membrane outer surface induces a transmembrane organizational alteration at the inner surface, Proc. Natl. Acad. Sci. U.S.A. 71:2212.PubMedCrossRefGoogle Scholar
  175. Jiménez de Asuñ, L., Rozengurt, E., and Dulbecco, R., 1974, Kinetics of early changes in phosphate and uridine transport and cyclic AMP levels stimulated by serum in density-inhibited 3T3 cells, Proc. Natl. Acad. Sci. U.S.A. 71:96.CrossRefGoogle Scholar
  176. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G., 1973, Evidence for boundary lipid in membranes, Proc. Natl. Acad. Sci. U.S.A. 70:480.PubMedCrossRefGoogle Scholar
  177. Kaneko, I., Satoh, H., and Ukita, T., 1973, Effect of metabolic inhibitors on the agglutination of tumor cells by concanavalin A and Ricinus communis agglutinin, Biochem. Biophys. Res. Commun. 50:1087.PubMedCrossRefGoogle Scholar
  178. Kant, J. A., and Steck, T. L., 1973, Specificity in the association of glyceraldehyde 3-phosphate dehydrogenase with isolated human erythrocyte membranes, J. Biol. Chem. 248:8457.PubMedGoogle Scholar
  179. Karnovsky, M. J., Unanue, E. R., and Leventhal, M., 1972, Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties, J. Exp. Med. 136:907.PubMedCrossRefGoogle Scholar
  180. Kasărov, L. B., and Friedman, H., 1974, Enhanced Na+-K+-activated adenosine triphosphatase activity in transformed fibroblasts, Cancer Res. 34:1862.PubMedGoogle Scholar
  181. Keith, A. D., Waggoner, A. S., and Griffith, O. H., 1970, Spin labeled mitochrondrial lipids in Neurospora crassa, Proc. Natl. Acad. Sci. U.S.A. 61:819.CrossRefGoogle Scholar
  182. Khera, K. S., Ashkenazi, A., Rapp, F., and Melnick, J. L., 1963, Immunity in hamsters to cells transformed in vitro and in vivo by SV40: Tests for antigenic relationship among the papovaviruses, J. Immunol. 91:604.PubMedGoogle Scholar
  183. Kijimoto, S., and Hakomori, S., 1971, Enhanced glycolipid: α-galactosyltransferase activity in contact-inhibited hamster cells, and loss of this response in polyoma transformants, Biochem. Biophys. Res. Commun. 44:557.PubMedCrossRefGoogle Scholar
  184. Kimelberg, H. K., and Mayhew, E., 1975, Increased ovabain-sensitive 86Rb+ uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines, J. Biol. Chem. 250:100.PubMedGoogle Scholar
  185. Kleemann, W., and Mcconnell, H. M., 1974, Lateral phase separations in Escherichia coli membranes, Biochim. Biophys. Acta 345:220.PubMedCrossRefGoogle Scholar
  186. Klein, G., 1973, Tumor immunology, Transplant. Proc. 5:31.PubMedGoogle Scholar
  187. Kletzien, R. F., and Perdue, J. F., 1973, Inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B: Evidence for a membrane-specific effect, J. Biol. Chem. 248:711.PubMedGoogle Scholar
  188. Kletzien, R. F., and Perdue, J. F., 1974a, Sugar transport in chick embryo fibroblasts. II. Alterations in transport following transformation by a temperature-sensitive mutant of the Rous sarcoma virus, J. Biol. Chem. 249:3375.PubMedGoogle Scholar
  189. Kletzien, R. F., and Perdue, J. F., 1974b, Sugar transport in chick embryo fibroblasts. III. Evidence for post-transcriptional and post-translational regulation of transport following serum addition, J. Biol. Chem. 249:3383.Google Scholar
  190. Kornberg, R. D., and Mcconnell, H. M., 1971a, Lateral diffusion of phopsholipids in a vesicle membrane, Proc. Natl. Acad. Sci. U.S.A. 68:2564.PubMedCrossRefGoogle Scholar
  191. Kornberg, R. D., and Mcconnell, H. M., 1971b, Inside-outside transitions of phospholipids in vesicle membranes, Biochemistry 10:1111.PubMedCrossRefGoogle Scholar
  192. Kourilsky, F. M., Silvestre, C., Neauport-Sautes, C., Loosfelt, Y., and Dausset, J., 1972, Antibody-induced redistribution of HL-A antigens at the cell surface, Eur. J. Immunol. 2:249.PubMedCrossRefGoogle Scholar
  193. Kram, R., and Tomkins, G. M., 1973, Pleiotypic control by cyclic AMP: Interaction with cyclic GMP and possible role of microtubules, Proc. Natl. Acad. Sci. U.S.A. 70:1659.PubMedCrossRefGoogle Scholar
  194. Lai, M. M., and Duesberg, P. H., 1972, Differences between the envelope glycoproteins and glycopeptides of avian tumor viruses released from transformed and from nontransformed cells, Virology 50:359.PubMedCrossRefGoogle Scholar
  195. Lee, A. G., Birdsall, N. J. M., and Metcalfe, J. C., 1972, Measurement of fast lateral diffusion of lipids in vesicles and in biological membranes by 1H nuclear magnetic resonance, Biochemistry 12:1650.CrossRefGoogle Scholar
  196. Lengerová, A., 1972, The expression of normal histocompatibility antigens in tumor cells, Adv. Cancer Res. 16:235.PubMedCrossRefGoogle Scholar
  197. Lichtman, M. A., and Weed, R. I., 1970, Electrophoretic mobility and N-acetyl neuraminic acid content of human normal and leukemic lymphocytes and granulocytes, Blood 35:12.PubMedGoogle Scholar
  198. Lipkin, G., 1974, personal communication.Google Scholar
  199. Lipkin, G., and Knecht, M. E., 1974, A diffusible factor restoring contact inhibition of growth to malignant melanocytes, Proc. Natl. Acad. Sci. U.S.A. 71:849.PubMedCrossRefGoogle Scholar
  200. Lis, H., and Sharon, N., 1973, The biochemistry of plant lectins (phytohemagglutinins), Ann. Rev. Biochem. 43:541.CrossRefGoogle Scholar
  201. Loewenstein, W. R., 1969, Transfer of information through cell junctions and growth control, Can. Cancer Conf. 8:162.Google Scholar
  202. Loor, F., 1973, Lectin-induced lymphocyte agglutination: An active cellular process? Exp. Cell Res. 82:415.CrossRefGoogle Scholar
  203. Loor, F., Forni, L., and Pernis, G., 1972, The dynamic state of the lymphocyte membrane factor affecting the distribution and turnover of surface immunoglobulins, Eur. J. Immunol. 2:203.PubMedCrossRefGoogle Scholar
  204. Lowick, J. H. B., Purdom, L., James, A. M., and Ambrose, E. J., 1961, Some microelectrophoretic studies of normal and tumour cells, J. R. Microsc. Soc. 80:47.CrossRefGoogle Scholar
  205. Mabry, E. W., and Carubelli, R., 1972, Sialic acid in human cancer, Experentia 28:182.CrossRefGoogle Scholar
  206. Maizel, J. V., Jr., 1971, Polyacrylamide gel electrophoresis of viral protein, Methods in Virology, Vol. 5 (K. Maramorosch and H. Koprowski, eds.), pp. 179–276, Academic Press, New York.Google Scholar
  207. Marita, A., and Seyama, Y., 1971, Alterations of Forssman-antigenic reactivity and of monosaccharide composition in plasma membrane from polyoma-transformed hamster cells, Biochim. Biophys. Acta 241:403.CrossRefGoogle Scholar
  208. Makita, A., and Shimojo, H., 1973, Polysaccharides of SV40-transformed green monkey kidney cells, Biochim. Biophys. Acta 304:571.PubMedCrossRefGoogle Scholar
  209. Mallucci, L., 1971, Binding of concanavalin A to normal and transformed cells as detected by immunofluorescence, Nature New Biol. 233:241.PubMedGoogle Scholar
  210. Marchelonis, J. J., Cone, R. E., and Santer, V., 1971, Enzymic iodination: A probe for accessible surface proteins of normal and neoplastic lymphocytes, Biochem. J. 124:921.Google Scholar
  211. Marchesi, V. T., and Steers, E., Jr., 1968, Selective solubilization of a protein component of the red cell membrane, Science 159:203.PubMedCrossRefGoogle Scholar
  212. Marchesi, V. T., Steers, E., Jr., Tillacr, T. W., and Marchesi, S. L., 1969, Some properties of spectrin: A fibrous protein isolated from red cell membranes, in: The Red Cell Membrane, Structure and Function (G. A. Jamieson and T. J. Greenwalt, eds.), pp. 117–130, Lippincott, Phila.Google Scholar
  213. Martensson, E., Öhman, R., Graves, M., and Svennerholm, L., 1974, Galactosyltransferases catalyzing the formation of the galactosyl-galactosyl linkage in glycosphingolipids, J. Biol. Chem. 249:4132.PubMedGoogle Scholar
  214. Martinez-Palomo, A., 1970, The surface coats of animal cells, Int. Rev. Cytol. 29:29.CrossRefGoogle Scholar
  215. Martinez-Palomo, A., Braislovsky, C., and Bernhard, W., 1969, Ultrastructural modifications of the cell surface and intercellular contacts of some transformed cell strains, Cancer Res. 29:925.PubMedGoogle Scholar
  216. Martinez-Palomo, A., Wicrer, R., and Bernhard, W., 1972, Ultrastructural detection of concanavalin surface receptors in normal and in polyoma-transformed cells, Int. J. Cancer 9:676.PubMedCrossRefGoogle Scholar
  217. Mayhew, E., 1966, Cellular electrophoretic mobility and the mitotic cycle, J. Gen. Physiol. 49:717.PubMedCrossRefGoogle Scholar
  218. Mazia, D., and Ruby, A., 1968, Dissolution of erythrocyte membranes in water and comparison of the membrane protein with other structural proteins, Proc. Natl. Acad. Sci. U.S.A. 61:1005.PubMedCrossRefGoogle Scholar
  219. Mcclelland, D. A., and Bridges, J. M., 1973, The total N-acetyl neuraminic acid content of human normal and lymphatic leukaemic lymphocytes, Br. J. Cancer 27:114.PubMedCrossRefGoogle Scholar
  220. Mccutcheon, M., Coman, D. R., and Moore, F. B., 1948, Studies on invasiveness of cancer: Adhesiveness of malignant cells in various human adenocarcinomas, Cancer 1:460.PubMedCrossRefGoogle Scholar
  221. Mcnutt, N. S., Culp, L. A., and Black, P. H., 1971, Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study, J. Cell Biol. 50:691.PubMedCrossRefGoogle Scholar
  222. Mcnutt, N. S., and Weinstein, R. S., 1973, Membrane ultrastructure at mammalian intercellular junctions, Prog. Biophys. Mol. Biol. 26:45.PubMedCrossRefGoogle Scholar
  223. Meezan, E., Wu, H. C., Black, P. H., and Robbins, P. W., 1969, Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by Sephadex chromatography, Biochemistry 8:2518.PubMedCrossRefGoogle Scholar
  224. Mehrishi, J. N., 1972, Molecular aspects of the mammalian cell surface, Prog. Biophys. Mol. Biol. 25:1.PubMedCrossRefGoogle Scholar
  225. Mehrishi, J. N., and Thomson, A. E. R., 1968, Relationship between pH and eletrophoretic mobility for lymphocytes circulating in chronic lymphocytic leukaemia, Nature (London) 219:1080.CrossRefGoogle Scholar
  226. Meltzer, M. S., Leonard, E. J., Rapp, H. J., and Borsos, T., 1971, Tumor-specific antigen solubilized by hypertonic potassium chloride, J. Natl. Cancer Inst. 47:703.PubMedGoogle Scholar
  227. Mora, P. T., Fishman, P. H., Bassin, R. H., Brady, R. O., and Mcfarland, V. W., 1973, Transformation of Swiss 3T3 cells by murine sarcoma virus is followed by decrease in a glycolipid glycosyltransferase, Nature New Biol. 245:226.PubMedGoogle Scholar
  228. Morawiecki, A., 1964, Dissociation of M-and N-group mucoproteins into subunits in detergent solution, Biochim. Biophys. Acta 83:339.PubMedGoogle Scholar
  229. Morrison, M., Mueller, T. J., and Huber, C. T., 1974, Transmembrane orientation of the glycoproteins in normal human erythrocytes, J. Biol. Chem. 249:2658.PubMedGoogle Scholar
  230. Moyer, S. A., and Summers, D. F., 1974, Vesicular stomatitis virus envelope glycoprotein alterations induced by host cell transformation, Cell 2:63.PubMedCrossRefGoogle Scholar
  231. Muramatsu, T., Atkinson, P. H., Nathenson, S. G., and Ceccarini, C., 1973, Cell-surface glycopeptides: Growth-dependent changes in the carbohydtrate-peptide linkage region, J. Mol. Biol. 80:781.PubMedCrossRefGoogle Scholar
  232. Nicolson, G. L., 1971, Difference in the topology of normal and tumor cell membranes as shown by DIFFERENT distributions of ferritin-conjugated concanavalin A on their surfaces, Nature New Biol. 233:244.PubMedGoogle Scholar
  233. Nicolson, G. L., 1972, Topography of cell membrane concanavalin A-sites modified by proteolysis, Nature New Biol. 239:193.PubMedGoogle Scholar
  234. Nicolson, G. L., 1973a, Neuraminidase “unmasking” and the failure of trypsin to “unmask” β-D-galactose-like sites on erythrocyte, lymphoma and normal and SV40-transformed 3T3 fibroblast cell membranes, J. Natl. Cancer Inst. 50:1443.PubMedGoogle Scholar
  235. Nicolson G. L., 1973b, Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces, Nature New Biol. 243:218.PubMedGoogle Scholar
  236. Nicolson, G. L., 1974a, The interactions of lectins with animal cell surfaces, Int. Rev. Cytol. 39:89.PubMedCrossRefGoogle Scholar
  237. Nicolson, G. L., 1974b, Factors influencing the dynamic display of lectin-binding sites on normal and transformed cell surfaces, in: Control of Proliferation in Animal Cell Surfaces (B. Clarkson and R. Baserga, eds.), pp. 251–270, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  238. Nicolson, G. L., 1975, Concanavalin A as a quantitative and ultrastructural probe for normal and neoplastic cell surfaces, in: Concanavalin A (T. K. Chowdhury, ed.), pp. 153–172, Plenum Press, New York.CrossRefGoogle Scholar
  239. Nicolson, G. L., and Lacorbiere, M., 1973, Cell contact-dependent increase in membrane D-galactopyranosyl-like residues on normal, but not virus-or spontaneously-transformed murine fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 70:1672.PubMedCrossRefGoogle Scholar
  240. Nicolson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes. II. Transmembrane effects of anti-spectrin on the topography of bound positively charged colloidal particles, J. Cell Biol. 59:395.PubMedCrossRefGoogle Scholar
  241. Nicolson, G. L., and Singer, S. J., 1971, Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: Application to saccharides bound to cell membranes, Proc. Natl. Acad. Sci. U.S.A. 68:942.PubMedCrossRefGoogle Scholar
  242. Nicolson, G. L., and Singer, S. J., 1974, The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains, J. Cell Biol. 60:236.PubMedCrossRefGoogle Scholar
  243. Nicolson, G. L., and Winkelhake, J. L., 1975a, An experimental approach to studying organ specificity of pulmonary tumor metastasis, in: Cell Surfaces and Malignancy (P. Mora, ed.), Fogarty International Center, Government Printing Office, Washington, D.C.Google Scholar
  244. Nicolson, G. L., and Winkelhake, J. L., 1975b, Organ specificity of blood-borne metastasis determined by cell adhesion? Nature 255:230.PubMedCrossRefGoogle Scholar
  245. Nicolson, G. L., Marchesi, V. T., and Singer, S. J., 1971, The localization of spectrin on the inner surface of human red blood cell membranes with ferritin-conjugated antibodies, J. Cell Biol. 51:265.PubMedCrossRefGoogle Scholar
  246. Nicolson, G. L., Blaustein, J., and Etzler, M. E., 1974, Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma, Biochemistry 13:196.PubMedCrossRefGoogle Scholar
  247. Nicolson, G. L., Lacorbiere, M., and Eckhart, W., 1975, Qualitative and quantitative interactions of lectins with untreated and neuraminidase-treated normal, wild-type and temperature-sensitive polyoma-transformed fibroblasts, Biochemistry 14:172.PubMedCrossRefGoogle Scholar
  248. Nigam, V. N., and Cantero, A., 1972, Polysaccharides in cancer, Adv. Cancer Res. 16:1.PubMedCrossRefGoogle Scholar
  249. Ohta, N., Pardee, A. B., Mcauslan, B.R., and Burger, M. M., 1968, Sialic acid contents and controls of normal and malignant cells, Biochim. Biophys. Acta 158:98.PubMedCrossRefGoogle Scholar
  250. Old, L. J., and Boyse, E., 1973, Current enigmas in cancer research, Harvey Lect. 67:273.PubMedGoogle Scholar
  251. Oppenheimer, S. B., 1973, Utilization of L-glutamine in intercellular adhesion: Ascites tumor and embryonic cells, Exp. Cell Res. 77:175.PubMedCrossRefGoogle Scholar
  252. Oppenheimer, S. B., Edidin, M., Orr, C. W., and Roseman, S., 1969, An L-glutamine requirement for intercellular adhesion, Proc. Natl. Acad. Sci. U.S.A. 63:1395.PubMedCrossRefGoogle Scholar
  253. Ossowski, L., Unkeless, J. C., Tobia, A., Quigley, J. P., Rifkin, D. B., and Reich, E., 1973a, An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumor viruses, J. Exp. Med. 137:112.PubMedCrossRefGoogle Scholar
  254. Ossowski, L., Quigley, J. P., Kellerman, G. M., and Reich, E., 1973b, Fibrinolysis associated with oncogenic transformation: Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar, and cell migration, J. Exp. Med. 138:1056.PubMedCrossRefGoogle Scholar
  255. Ossowski, L., Quigley, J. P., and Reich, E., 1974, Fibrinolysis associated with oncogenic transformation: Morphological correlates, J. Biol. Chem. 249:4312.PubMedGoogle Scholar
  256. Oxender, D. L., 1972, Membrane transport, Ann. Rev. Biochem. 41:777.PubMedCrossRefGoogle Scholar
  257. Ozanne, B., and Sambrook, J., 1971, Binding of radioactively labeled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells, Nature New Biol. 232:156.PubMedCrossRefGoogle Scholar
  258. Papahadjopoulos, D., Poste, G., and Schaeffer, B. E., 1973, Fusion of mammalian cells by unilamellar lipid vesicles: Influence of lipid surface charge, fluidity and cholesterol, Biochim. Biophys. Acta 232:23.Google Scholar
  259. Pardee, A. B., 1964, Cell division and a hypothesis of cancer, Natl. Cancer Inst. Monogr. 14:7.PubMedGoogle Scholar
  260. Pardee, A. B., 1974, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U.S.A. 71:1286.PubMedCrossRefGoogle Scholar
  261. Pardee, A. B., Jiménez de Asúa, L., and Rozengurt, E., 1974, Functional membrane changes and cell growth: Significance and mechanism, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 547–561, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  262. Patinkin, D., Schlesinger, M., and Doljanski, R., 1970, A study ionogenic groups of different types of normal and leukemic cells, Cancer Res. 30:489.PubMedGoogle Scholar
  263. Patt, L. M., and Grimes, W. J., 1974, Cell surface glycolipid and glycoprotein glycosyltransferases of normal and transformed cells, J. Biol. Chem. 249:4157.PubMedGoogle Scholar
  264. Paul, D., 1973, Quiescent SV40 virus transformed 3T3 cells in culture, Biochem. Biophys. Res. Commun. 53:745.PubMedCrossRefGoogle Scholar
  265. Pearlstein, E., and Waterfield, M. D., 1974, Metabolic studies on 125I-labeled baby hamster kidney cell plasma membranes, Biochim. Biophys. Acta 362:1.PubMedCrossRefGoogle Scholar
  266. Peck, S. D., and Reiquam, C. W., 1973, Disseminated intravascular coagulation in cancer patients: Supportive evidence, Cancer 31:1114.PubMedCrossRefGoogle Scholar
  267. Perdue, J. F., 1973, The distribution, ultrastructure, and chemistry of microfilaments in cultured chick embryo fibroblasts, J. Cell Biol. 58:265.PubMedCrossRefGoogle Scholar
  268. Perdue, J. F., Kletzien, R., and Wray, V. L., 1972, The isolation and characterization of plasma membrane from cultured cells. IV. The carbohydrate composition of membranes isolated from oncogenic RNA virus-converted chick embryo fibroblasts, Biochim. Biophys. Acta 266:505.PubMedCrossRefGoogle Scholar
  269. Pfeiffer, S. E., Herschman, H. R., Lightbody, J. E., Sato, G., and Levine, L., 1971, Modification of cell surface antigenicity as a function of cell culture conditions, J. Cell Physiol. 78:145.PubMedCrossRefGoogle Scholar
  270. Phillips, D. R., and Morrison, M., 1971, Exposed protein on the intact human erythrocyte, Biochemistry 10:1766.PubMedCrossRefGoogle Scholar
  271. Phillips, P. G., Furmanski, P., and Lubin, M., 1974, Cell surface interactions with concanavalin A: Location of bound radiolabeled lectin, Exp. Cell Res. 86:301.PubMedCrossRefGoogle Scholar
  272. Pinto da Silva, P., 1972, Translational mobility of the membrane intercalated particles of human erythrocyte ghosts, pH-dependent, reversible aggregation, J. Cell Biol. 53:777.PubMedCrossRefGoogle Scholar
  273. Pinto da Silva, P., and Nicolson, G. L., 1974, Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles on human erythrocyte membranes, Biochim. Biophys. Acta 363:311.CrossRefGoogle Scholar
  274. Poduslo, J. F., Greenberg, C. S., and Glick, M. C., 1972, Proteins exposed on the surface of mammalian membranes, Biochemistry 11:2616.PubMedCrossRefGoogle Scholar
  275. Poste, G., 1972, Mechanisms of virus-induced cell fusion, Int. Rev. Cytol 33:157.PubMedCrossRefGoogle Scholar
  276. Poste, G., Greenham, L. W., Mallucci, L., Reeve, P., and Alexander, D. J., 1973, The study of cellular “microexudates” by ellipsometry and their relationship to the cell coat, Exp. Cell Res. 78:303.PubMedCrossRefGoogle Scholar
  277. Quigley, J. P., Rifkin, D. B., and Reich, E., 1971, Phospholipid composition of Rous sarcoma virus, host cell membranes and other enveloped RNA viruses, Virology 46:106.PubMedCrossRefGoogle Scholar
  278. Quigley, J. P., Rifkin, D. B., and Reich, E., 1972, Lipid studies of Rous sarcoma virus and host cell membranes, Virology 50:550.PubMedCrossRefGoogle Scholar
  279. Quigley, J. P., Ossowski, L., and Reich, E., 1974, Plasminogen, the serum proenzyme activated by factors from cells transformed by oncogenic viruses, J. Biol. Chem. 249:4306.PubMedGoogle Scholar
  280. Rrfkin, D. B., Loeb, J. N., Moore, G., and Reich, E., 1974, Properties of plasminogen activators formed by neoplastic human cell cultures, J. Exp. Med. 139:1317.CrossRefGoogle Scholar
  281. Romano, A. H., and Colby, C., 1973, SV40 virus transformation of mouse 3T3 cells does not specifically enhance sugar transport, Science 179:1238.PubMedCrossRefGoogle Scholar
  282. Roseman, S., 1970, The synthesis of complex carbohydrates by multi-glycosyl-transf erase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5:270.PubMedCrossRefGoogle Scholar
  283. Rosenblith, J. Z., Ukena, T. E., Yin, H. H., Berlin, R. D., and Karnovsky, M. J., 1973, A comparative evaluation of the distribution of concanavalin A-binding sites on the surfaces of normal, virally-transformed, and protease-treated fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 70:1625.PubMedCrossRefGoogle Scholar
  284. Roth, S., 1973, A molecular model for cell interations, Quart. Rev. Biol. 48:541.PubMedCrossRefGoogle Scholar
  285. Roth, S., and White, D., 1972, Intercellular contact and cell-surface galactosyltransferase activity, Proc. Natl. Acad. Sci. U.S.A. 69:485.PubMedCrossRefGoogle Scholar
  286. Roth, S., Mcguire, E. J., and Roseman, S., 1971, An assay for intercellular adhesive specificity, J. Cell Biol. 51:525.PubMedCrossRefGoogle Scholar
  287. Roth, J., Meyer, H. W., and Bolck, F., 1973, Concanavalin A binding sites in the plasma membrane of normal cells, spontaneously transformed cells and tumor cells as visualized by electron microscopy, Exp. Pathol. 8:19.Google Scholar
  288. Rowlatt, C., Wicker, R., and Bernhard, W., 1973, Ultrastructural distribution of concanavalin A receptors on hamster embryo and adenovirus tumour cell cultures, Int. J. Cancer 11:314.PubMedCrossRefGoogle Scholar
  289. Rozengurt, E., and Jiménez de Asuá, L., 1973, Role of cyclic AMP in the early transport changes induced by serum and insulin in quiescent fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 70:3609.PubMedCrossRefGoogle Scholar
  290. Rubin, H., and Fodge, D., 1974, Interrelationships of glycolysis, sugar transport and the initiation of DNA synthesis in chick embryo cells, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 801–816, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  291. Rudland, P. S., Gospodarowicz, D., and Seifert, W., 1974, Activation of guanyl cyclase and intracellular cyclic GMP by fibroblast growth factor, Nature (London) 250:741.CrossRefGoogle Scholar
  292. Ruoslahti, E., and Vaheri, A., 1974, Novel human serum protein from fibroblast plasma membrane, Nature (London) 248:789.CrossRefGoogle Scholar
  293. Sakiyama, H., and Burge, B. W., 1972, Comparative studies of the carbohydrate-containing components of 3T3 and simian virus 40-transformed 3T3 mouse fibroblasts, Biochemistry 11:1366.PubMedCrossRefGoogle Scholar
  294. Sakiyama, H., Gross, S. K., and Robbins, P. W., 1972, Glycolipid synthesis in normal and virus-transformed hamster cell lines, Proc. Natl. Acad. Sci. U.S.A. 69:872.PubMedCrossRefGoogle Scholar
  295. Satoh, C., Duff, R., Rapp, F., and Davidson, E. A., 1973, Production of mucopolysaccharides by normal and transformed cells, Proc. Natl. Acad. Sci. U.S.A. 70:54.PubMedCrossRefGoogle Scholar
  296. Scandella, C. J., Devaux, P., and Mcconnell, H. M., 1972, Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 69:2056.PubMedCrossRefGoogle Scholar
  297. Schengrund, C.-L., Lausch, R. N., and Rosenberg, A., 1973, Sialidase activity in transformed cells, J. Biol. Chem. 248:4424.PubMedGoogle Scholar
  298. Schnebli, H. P., 1972, A protease-like activity associated with malignant cells, Schweiz. Med. Wochenschr. 102:1194.PubMedGoogle Scholar
  299. Schnebi, H. P., 1974, Growth inhibition of tumor cells by protease inhibitors: Consideration of the mechanisms involved, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 327–337, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  300. Schnebli, H. P., and Burger, M. M., 1972, Selective inhibition of growth of transformed cells by protease inhibitors, Proc. Natl. Acad. Sci. U.S.A. 69:3825.PubMedCrossRefGoogle Scholar
  301. Schroeder, T. E., 1968, Cytokinesis: Filaments in the cleavage furrow, Exp. Cell Res. 53:272.PubMedCrossRefGoogle Scholar
  302. Schubert, J. C. F., Walther, F., Holzberg, E., Pascher, G., and Zeiller, K., 1973, Preparative electrophoretic separation of normal and neoplastic human bone marrow cells, Klin. Wochenschr. 51:327.PubMedCrossRefGoogle Scholar
  303. Seaman, P., Chau-Wong, M., and Moyyen, S., 1973, Membrane expansion by vinblastine and strychnine, Nature New Biol. 241:22.Google Scholar
  304. Sefton, B. M., and Rubin, H., 1970, Release from density-dependent growth inhibition by proteolytic enzymes, Nature (London) 227:843.CrossRefGoogle Scholar
  305. Sefton, B. M., and Rubin, H., 1971, Stimulation of glucose transport in cultures of density-inhibited chick embryo cells, Proc. Natl. Acad. Sci. U.S.A. 68:3154.PubMedCrossRefGoogle Scholar
  306. Segrest, J. P., and Jackson, R. L., 1972, Molecular weight determination of glycoproteins by Polyacrylamide gel electrophoresis in sodium dodecyl sulfate, Meth. Enzymol. 28:54.CrossRefGoogle Scholar
  307. Segrest, J. P., Kahne, I. Jackson, R. L., and Marchesi, V. T., 1973, Major glycoprotein of the human erythrocyte membrane: Evidence for an amphipathic molecular structure, Arch. Biochem. Biophys. 155:167.PubMedCrossRefGoogle Scholar
  308. Seifert, W. E., and Rudland, P. S., 1974, Possible involvement of cyclic GMP in growth control of cultured mouse cells, Nature (London) 248:138.CrossRefGoogle Scholar
  309. Sela, B., Lis, H., Sharon, N., and Sachs, L., 1971, Quantitation of N-acetyl-D-galactosamine-like sites on the surface membrane of normal and transformed mammalian cells, Biochim. Biophys. Acta 249:564.PubMedCrossRefGoogle Scholar
  310. Sheinin, R., and Onodera, K., 1972, Studies of the plasma membrane of normal and virus-transformed 3T3 mouse cells, Biochim. Biophys. Acta 274:49.PubMedCrossRefGoogle Scholar
  311. Shin, B. C., and Carraway, K. L., 1973, Cell surface constituents of sarcoma 180 ascites tumor cells, Biochim. Biophys. Acta 330:254.PubMedCrossRefGoogle Scholar
  312. Shoham, J., and Sachs, L., 1972, Differences in the binding of fluorescent concanavalin A to the surface membrane of normal and transformed cells, Proc. Natl. Acad. Sci. U.S.A. 69:2479.PubMedCrossRefGoogle Scholar
  313. Simon-Reuss, I., Cook, G. M. W., Seaman, G. V. F., and Heard, D. H., 1964, Electrophoretic studies on some types of mammalian tissue cell, Cancer Res. 24:2038.PubMedGoogle Scholar
  314. Singer, S. J., 1971, The molecular organization of biological membranes, in: Structure and Function of Biological Membranes (L. E. Rothfield, ed.), pp. 145–222, Academic Press, New York.Google Scholar
  315. Singer, S. J., 1974, The molecular organization of membranes, Ann. Rev. Biochem. 43:805.PubMedCrossRefGoogle Scholar
  316. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedCrossRefGoogle Scholar
  317. Smith, S. B., and Revel, J.-P., 1972, Mapping of concanavalin A binding sites on the surf ace of several cell types, Dev. Biol. 27:434.PubMedCrossRefGoogle Scholar
  318. Staehelin, L. A., 1974, Structure and function of intercellular junctions, Int. Rev. Cytol. 39:191.PubMedCrossRefGoogle Scholar
  319. Steck, T. L., 1972a, The organization of proteins in human erythrocyte membranes, in: Membrane Research (C. F. Fox, ed.), pp. 71–93, Academic Press, New York.Google Scholar
  320. Steck, T. L., 1972b, Crosslinking the major proteins of the isolated erythrocyte membrane, J. Mol. Biol. 66:295.PubMedCrossRefGoogle Scholar
  321. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane: A review, J. Cell Biol. 62:1.PubMedCrossRefGoogle Scholar
  322. Steck, T. L., and Yu, J., 1973, Selective solubilization of proteins from red blood cell membranes by protein perturbants, J. Supramol. Struct. 1:220.PubMedCrossRefGoogle Scholar
  323. Steim, J. M., Tourtellotte, M. E., Reinert, J. C., Mcelhaney, R. N., and Rader, R. L., 1969, Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane, Proc. Natl. Acad. Sci. U.S.A. 63:104.PubMedCrossRefGoogle Scholar
  324. Stein, S. M., and Berestecky, J. M., 1975, Exposure of an arginine-rich protein at surface of cells in S, G2 and M phases of the cell cycle, J. Cell Physiol. 85:243.PubMedCrossRefGoogle Scholar
  325. Steiner, S., and Melnick, J. L., 1974, Altered fucolipid patterns in cultured human cancer cells, Nature (London) 251:717.CrossRefGoogle Scholar
  326. Steiner, S., Brennan, P. J., and Melnick, J. L., 1973a, Fucosylglycolipid metabolism in oncornavirus-transformed cell lines, Nature New Biol. 245:19.PubMedGoogle Scholar
  327. Steiner, S., Courtney, R. J., and Melnick, J. L., 1973b, Incorporation of 2-deoxy-D-glucose into glycoproteins of normal and SV40-transformed hamster cells, Cancer 33:2402.Google Scholar
  328. Stone, K. R., Smith, R. E., and Joklik, W. K., 1974, Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses, Virology 58:86.PubMedCrossRefGoogle Scholar
  329. Sundqvist, K. G., 1972, Redistribution of surface antigens—A general property of animal cells? Nature New Biol. 239:147.PubMedGoogle Scholar
  330. Talmadge, K. W., Noonan, K. D., and Burger, M. M., 1974, The transformed cell surface: An analysis of the increased lectin agglutinability and the concept of growth control by surface proteases, in: Conntrol of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 313–325, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  331. Taylor, R. B., Duffus, W. P. H., Raff, M. C., and DE Petris, S., 1971, Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody, Nature New Biol. 233:225.PubMedCrossRefGoogle Scholar
  332. Terry, A. H., and Culp, L. A., 1974, Substrate-attached glycoproteins from normal and virus-transformed cells, Biochemistry 13:414PubMedCrossRefGoogle Scholar
  333. Thomson, A. E. R., and Mehrishi, H. N., 1969, Surface properties of normal human circulating small lymphocytes and lymphocytes in chronic lymphocytic leukaemia: Separation, adhesiveness and electrokinetic properties, Eur. J. Cancer 5:195.PubMedGoogle Scholar
  334. Tooze, J., ed., 1973, The Molecular Biology of Tumour Viruses, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  335. Tourtellotte, M. E., Branton, D., and Keith, A., 1970, Membrane structure: Spin labeling and freeze-etching of Mycoplasma laidlawaii, Proc. Natl. Acad. Sci. U.S.A. 66:909.PubMedCrossRefGoogle Scholar
  336. Ukena, T. E., Borysenko, J. Z., Karnovsky, M. J., and Berlin, R. D., 1974, Effects of colchicine, cytochalasin B and 2-deoxyglucose on the topographical organization of surface-bound concanava-lin A in normal and transformed fibroblasts, J. Cell Biol. 61:70.PubMedCrossRefGoogle Scholar
  337. Unkeless, J. C., Gordon, S., and Reich, E., 1974a, Secretion of plasminogen activator by stimulated macrophages, J. Exp. Med. 139:834.PubMedCrossRefGoogle Scholar
  338. Unkeless, J., Danø, K., Kellerman, G. M., and Reich, E., 1974b, Fibrinolysis associated with oncogenic transformation. Partial purification and characterization of the cell factor, a plasminogen activator, J. Biol. Chem. 249:4295.PubMedGoogle Scholar
  339. Vaheri, A., and Ruoslahti, E., 1974, Disappearance of a major cell-type specific surface glycoprotein antigen (SF) after transformation of fibroblasts by Rous sarcoma virus, Int. J. Cancer 13:579.PubMedCrossRefGoogle Scholar
  340. Vaheri, A., Ruoslahti, E., and Nordling, S., 1972, Neuraminidase stimulates division and sugar uptake in density-inhibited cell cultures, Nature New Biol. 238:211.PubMedCrossRefGoogle Scholar
  341. VAN Beek, W. P., Smets, L. A., and Emmelot, P., 1973, Increased sialic acid density in surface glycoprotein of transformed and malignant cells—A general phenomenon? Cancer Res. 33:2913.PubMedGoogle Scholar
  342. Vanderkooi, G., 1972, Part I: Models of membrane structure. Molecular architecture of biological membranes, Ann. N.Y. Acad. Sci. 195:6.PubMedCrossRefGoogle Scholar
  343. Vassar, P. S., 1963, The electric charge density of human tumor cell surfaces, Lab. Invest. 12:1072.PubMedGoogle Scholar
  344. Vidal, R., Tarone, G., Peroni, F., and Comoglio, P. M., 1974, A comparative study of SV40-transformed fibroblast plasma membrane proteins labeled by enzymatic iodination or with trinitrobenzene sulfonate, FEBS Lett. 47:107.PubMedCrossRefGoogle Scholar
  345. Vlodavsky, I., and Sachs, L., 1974, Difference in the cellular cholesterol to phospholipid ratio in normal lymphocytes and lymphocytic leukaemic cells, Nature (London) 250:67.CrossRefGoogle Scholar
  346. Voyles, B. A., and Moskowitz, M., 1974, Polyacrylamide gel electrophoresis of glycoproteins on single concentration and gradient gels, Biochim. Biophys. Acta 351:178.PubMedCrossRefGoogle Scholar
  347. Wallach, D. F. H., 1969, Cellular membrane alterations in neoplasia: A review and a unifying hypothesis, Curr. Topics Microbiol. Immunol. 47:152.CrossRefGoogle Scholar
  348. Wallach, D. F. H., and Zahler, P. H., 1966, Protein conformation in cellular membranes, Proc. Natl. Acad. Sci. U.S.A. 56:1552.PubMedCrossRefGoogle Scholar
  349. Warren, L., Critchley, D., and Macpherson, I., 1972a, Surface glycoproteins and glycolipids of chicken embryo cells transformed by a temperature-sensitive mutant of Rous sarcoma virus, Nature (London) 235:275.CrossRefGoogle Scholar
  350. Warren, L., Fuhrer, J. P., and Buck, C. A., 1972b, Surface glycoproteins of normal and transformed cells: A difference determined by sialic acid and a growth-dependent sialyl transferase, Proc. Natl. Acad. Sci. U.S.A. 69:1838.PubMedCrossRefGoogle Scholar
  351. Warren, L., Fuhrer, J. P., and Buck, C. A., 1973, Surface glycoproteins of cells before and after transformation by oncogenic viruses, Fed. Proc. 32:80.PubMedGoogle Scholar
  352. Weber, M. J., Hale, A. H., and Roll, D. E., 1975, Role of protease activity in malignant transformation by Rous sarcoma virus, in: Proteases in Biological Control (E. Shaw, E. Reich, and D. Rifkin, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  353. Weinstein, R. S., and Mcnutt, N. S., 1972, Current concepts—Cell junctions, N. Engl. J. Med. 286:521.PubMedCrossRefGoogle Scholar
  354. Weiss, L., 1958, The effects of trypsin on the size, viability and dry mass of sarcoma 37 cells, Exp. Cell Res. 14:80.PubMedCrossRefGoogle Scholar
  355. Weiss, L., 1967, The Cell Periphery, Metastasis and Other Contact Phenomena, North-Holland, Amsterdam.Google Scholar
  356. Weiss, L., 1973, Neuraminidase, sialic acids, and cell interactions, J. Natl. Cancer Inst. 50:3.PubMedGoogle Scholar
  357. Wessells, N. K., Spooner, B. S., Ash, J. F., Bradly, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171:135.PubMedCrossRefGoogle Scholar
  358. Wickus, G. G., and Robbins, P. W., 1973, Plasma membrane proteins of normal and Rous sarcoma virus-transformed chick embryo fibroblasts, Nature New Biol. 245:65.PubMedCrossRefGoogle Scholar
  359. Wickus, G. G., Branton, P. E., and Robbins, P. W., 1974, Rous sarcoma virus transformation of the chick cell surface, in: Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), pp. 541–546, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  360. Wilkins, M. H. F., Blaurock, A. E., and Engelman, D. M., 1971, Bilayer structure in membranes, Nature New Biol. 230:72.PubMedCrossRefGoogle Scholar
  361. Willingham, M. C., and Pastan, I., 1974, Cyclic AMP mediates the concanavalin A agglutinability of mouse fibroblasts, J. Cell Biol. 63:288.PubMedCrossRefGoogle Scholar
  362. Winkelhake, J. L., and Nicolson, G. L., 1975, Adhesion of variant metastatic melanoma cells to BALB/3T3 cells and their virus-transformed derivatives, J. Natl. Cancer Inst, (in press).Google Scholar
  363. Winzler, R. J., 1970, Carbohydrates in cell surfaces, Int. Rev. Cytol. 29:77.PubMedCrossRefGoogle Scholar
  364. Winzler, R. J., Harris, E. D., Pekas, D. J., Johnson, C. A., and Weber, P., 1967, Studies on glycopeptides released by trypsin from intact human erythrocytes, Biochemistry 6:2195.PubMedCrossRefGoogle Scholar
  365. Woollen, W., and Turner, P., 1965, Plasma N-acetyl-β-glucosaminidase and-glucuronidase in health and disease, Clin. Chim. Acta 12:671.PubMedCrossRefGoogle Scholar
  366. Wu, H. C., Meezan, E., Black, P. H., and Robbins, P. W., 1969, Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. I. Glucosamine-labeling patterns in 3T3, spontaneously transformed 3T3, and SV40-transformed 3T3 cells, Biochemistry 8:2509.PubMedCrossRefGoogle Scholar
  367. Yahara, I., and Edelman, G. M., 1972, Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A, Proc. Natl. Acad. Sci. U.S.A. 69:608.PubMedCrossRefGoogle Scholar
  368. Yahara, I., and Edelman, G. M., 1973a, Modulation of lymphocyte receptor redistribution by concanavalin A, anti-mitotic agents and alterations of pH, Nature (London) 236:152.CrossRefGoogle Scholar
  369. Yahara, I., and Edelman, G. M., 1973b, The effects of concanavalin A on the mobility of lymphocyte surface receptors, Exp. Cell Res. 81:143.PubMedCrossRefGoogle Scholar
  370. Yamada, K. M., and Weston, J. A., 1974, Isolation of a major cell surface glycoprotein from fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 71:3492.PubMedCrossRefGoogle Scholar
  371. Yamamoto, K., and Terayama, H., 1973, Comparison of cell coat acid mucopolysaccharides of normal liver and various ascites hepatoma cells, Cancer Res. 33:2257.PubMedGoogle Scholar
  372. Yau, T. M., and Weber, M. J., 1972, Changes in acyl group composition of phospholipids from chicken embryonic fibroblasts after transformation by Rous sarcoma virus, Biochem. Biophys. Res. Commun. 49:114.PubMedCrossRefGoogle Scholar
  373. Yau, T. M., and Weber, M. J., 1974, personal communication.Google Scholar
  374. Yin, H. H., Ukena, T. E., and Berlin, R. D., 1972, Effect of colchicine, colcemid and vinblastine on the agglutination by concanavalin A, of transformed cells, Science 178:867.PubMedCrossRefGoogle Scholar
  375. Yogeeswaran, G., Sheinin, R., Wherrett, J. R., and Murray, R. K., 1972, Studies on the glycosphingolipids of normal and virally transformed 3T3 mouse fibroblasts, J. Biol. Chem. 247:5146.PubMedGoogle Scholar
  376. Yogeeswaran, G., Laine, R. A., and Hakomori, S., 1974, Mechanism of cell contact-dependent glycolipid synthesis: Further studies with glycolipid—glass complex, Biochem. Biophys. Res. Commun. 59:591.PubMedCrossRefGoogle Scholar
  377. Zwall, R. F. A., Roelofsen, B., and Colley, C. M., 1973, Localization of red cell membrane constituents, Biochim. Biophys. Acta 300:159.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • James C. Robbins
    • 1
  • Garth L. Nicolson
    • 2
  1. 1.Department of Cancer BiologyThe Salk Institute for Biological StudiesSan DiegoUSA
  2. 2.Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations