Advertisement

The Vestibular System: Basic Biophysical and Physiological Mechanisms

  • Manning J. Correia
  • Fred E. GuedryJr.

Abstract

The vestibular sense organs behave analogously to an inertial guidance system. They respond to angular and linear accelerations of the head. The linear acceleration to which they respond may result from translational head motion or change in orientation of the head relative to gravity. Like certain proprioceptors and unlike certain exteroceptors, the vestibular sense organs not only detect energies in the environment but also provide feedback to the organism concerning the current state of motion and orientation of the head (and whole body) relative to the Earth’s or some other force field. Skillful control of whole body movement usually involves integration of vestibular information with that supplied by other senses to produce appropriate, smooth, and coordinated motor responses. The extent of this integration is reflected by the neural pathways which exist between the vestibular sensory end organs and structures such as the cerebellum, the extraocular muscles, and the flexor and extensor muscles of the neck, torso, and limbs. This association is illustrated in general in Fig. 1.

Keywords

Hair Cell Semicircular Canal Vestibular Nucleus Vestibular System Linear Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, T., Fanardjian, V. V., Ito, M., and Ohino, T. Electrophysiological analysis of the vestibulospinal reflex pathway of rabbit. II. Synaptic actions upon spinal neurones. Exp. Brain Res., 1973, 17, 497–515.Google Scholar
  2. Angaut, P., and Brodal, A. The projection of the vestibulo-cerebellum onto the vestibular nuclei in the cat. Arch. Ital. Biol, 1967, 105, 441–479.Google Scholar
  3. Anonymous. Nomina Anatomka, 3rd ed. Excerpta Medica Foundation, New York, 1968.Google Scholar
  4. Anson, B. J., Harper, D. G., and Winch, T. R. The vestibular and cochlear aqueducts: Developmental and adult anatomy of their contents and parietes. In Third Symposium on the Role of the Vestibular Organs in Space Exploration. NASA SP152, 1967, pp. 125–146.Google Scholar
  5. Baker, R. G., Mano, N., and Shimazu, H. Postsynaptic potentials in abducens motoneurons induced by vestibular stimulation. Brain Res., 1969, 15, 577–580.Google Scholar
  6. Baker, R. G., Precht, W., and Berthoz, A. Synaptic connections to trochlear motoneurons determined by individual vestibular nerve branch stimulation in the cat. Brain Res., 1973, 64, 402–406.Google Scholar
  7. Batini, C., Moruzzi, G., and Pompeiano, O. Cerebellar release phenomena. Arch. Ital. Biol, 1957, 95, 71–95.Google Scholar
  8. Benson, A. J., and Barnes, G. R. Responses to rotating linear acceleration vectors considered in relation to a model of the otolith organs. In Fifth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA SP-314, 1973, pp. 221–236.Google Scholar
  9. Bergström, B. Morphology of the vestibular nerve. Part 1. Ada Otolaryngol. (Stockholm), 1973a, 76, 162–172.Google Scholar
  10. Bergström, B. Morphology of the vestibular nerve. Part 2. Acta Otolaryngol. (Stockholm), 1973b, 76, 173–330.Google Scholar
  11. Bergström, B. Morphology of the vestibular nerve. Part 3. Acta Otolaryngol. (Stockholm), 1973c, 76, 331–402.Google Scholar
  12. Bergström, B. Morphological studies of the vestibular nerve. Acta Univ. Upsaliensis, l973d, 159, 1–41.Google Scholar
  13. Brodal, A., and Hoivik, B. Site and mode of termination of primary vestibulo-cerebellar fibres in the cat: An experimental study with silver impregnation methods. Arch. Ital. Biol, 1964, 102, 1–21.Google Scholar
  14. Brodal, A., and Pompeiano, O. The vestibular nuclei in the cat. J. Anat. (London), 1957, 91, 438–454.Google Scholar
  15. Brodal, A., Pompeiano, O., and Walberg, F. The Vestibular Nuclei and Their Connections: Anatomy and Functional Correlations. Oliver and Boyd, Edinburgh, 1962.Google Scholar
  16. Buttner, U., and Henn, V. Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res., 1976, 103, 127–132.Google Scholar
  17. Carlstrom, D., Engstrom, H., and Hjorth, S. Electron microscopic and X-ray diffraction studies of statoconia. Laryngoscope (St. Louis), 1953, 63, 1052–1057.Google Scholar
  18. Carpenter, M. B., Stein, B. M., and Peter, P. Primary vestibulo-cerebellar fibers in the monkey: Distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am. J. Anat., 1972, 135, 221–250.Google Scholar
  19. Carpenter, R. H. S. Cerebellectomy and the transfer function of the vestibulo-ocular reflex in the decerebrate cat. Proc. Roy. Soc. London Ser. B, 181, 1972, 353–374.Google Scholar
  20. Clark, B. The vestibular system. Ann. Rev. Psychol, 1970, 21, 273–206.Google Scholar
  21. Cohen, B., and Bender, M. B. The relationship of the semicircular canals to induced head and eye movements in mammals. In R. J. Wolfson (ed.). The Vestibular System and Its Diseases. University of Pennsylvania Press, Philadelphia, 1966, pp. 131–158.Google Scholar
  22. Cohen, B., and Komatsuzaki, A. Eye movements induced by stimulation of the pontine reticular formation: Evidence for integration in oculomotor pathways. Exp. Neurol, 1972, 36, 101–107.Google Scholar
  23. Cohen, B., and Suzuki, J. I. Eye movements induced by ampullary nerve stimulation. Am. J. Physiol, 1963, 204(2), 347–351.Google Scholar
  24. Cohen, B., Suzuki, J. I., Shanzer, S., and Bender, M. B. Semicircular canal control of eye movements. In M. B. Bender (ed.). The Oculomotor System. Harper & Row, New York, 1964, pp. 163–173.Google Scholar
  25. Collins, W. E., Crampton, G. H., and Posner, J. B. Effects of mental activity on vestibular nystagmus and the electroencephalogram. Nature, 1961, 190, 194–195.Google Scholar
  26. Correia, M. J., and Landolt, J. P. Spontaneous and driven responses from primary neurons of the anterior semicircular canal of the pigeon. Adv. Oto-Rhino-Laryngol, 1973, 19, 134–148.Google Scholar
  27. Correia, M. J., and Landolt, J. P. A point process analysis of the spontaneous activity of anterior semicircular canal units in the anesthetized pigeon. Biol Cybern., 1977, 27, 199–213.Google Scholar
  28. Correia, M. J., and Landolt, J. P. Neurophysiological response mechanisms in the vestibular afferent system. In J. Pulec (ed.), Menieres Disease. Palisades Pub. Co., Los Angeles, 1978.Google Scholar
  29. Correia, M. J., and Money, K. E. The effect of blockage of all six semicircular canal ducts on nystagmus 347 produced by dynamic linear acceleration in the cat. Acta Otolaryngol (Stockholm), 1970, 69, 7–16.Google Scholar
  30. Correia, M. J., Hixson, W. C., and Niven, J. I. On predictive equations for subjective judgments of vertical and horizon in a force field. Acta Otolaryngol. (Stockholm), Suppl, 1968, 230, 1–30.Google Scholar
  31. Correia, M. J., Nelson, J. B., and Guedry, F. E. Antisomatogyral Illusion. Aviat Space Environ. Med., 1977, 48(9), 859–862.Google Scholar
  32. Deecke, L., Schwarz, D. W. F., and Fredrickson, J. M. Vestibular thalamus in the rhesus monkey. Adv. Oto-Rhino-Laryngol, 1973, 19, 210–219.Google Scholar
  33. de Vries, H. The mechanics of the labyrinth otoliths. Acta Otolaryngol. (Stockholm), 1950, 38, 262–273.Google Scholar
  34. Dohlman, G. The attachment of the cupulae, otolith and tectorial membranes to the sensory cell areas. Acta Otolaryngol. (Stockholm), 1971, 71, 89–105.Google Scholar
  35. Engström, H., Bergström, B., and Ades, H. W. Macula utriculi and macula sacculi in squirrel monkey. In H. W. Ades and H. Engstrom (eds.), Inner Ear Studies. Acta Otolaryngol. (Stockholm) Suppl, 1912, 301, 75–126.Google Scholar
  36. Erhardt, K. J., and Wagner, A. Labyrinthine and neck reflexes recorded from single spinal motoneurons in the cat. Brain Res., 1970, 19, 87–104.Google Scholar
  37. Estes, M. S., Blanks, R. H. I., and Markham, C. H. Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J. Neurophysiol, 1975, 38, 1232–1249.Google Scholar
  38. Fernandez, C., and Goldberg, J. M. Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol, 1971, 34, 661–675.Google Scholar
  39. Fernandez, C., Goldberg, J. M., and Abend, W. K. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J. Neurophysiol, 1972, 35, 978–997.Google Scholar
  40. Fernandez, C., and Goldberg, J. M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II Directional selectivity and force-response relations. J. Neurophysiol, 1976a, 39, 985–995.Google Scholar
  41. Fernandez, C., and Goldberg, J. M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J. Neurophysiol, 1976b, 39, 996–1008.Google Scholar
  42. Fluur, E., and Mellstrom, A. Utricular stimulation and oculomotor reactions. Laryngoscope, 1970b, 80, 1701–1712.Google Scholar
  43. Fluur, E., and Mellstrom, A. Saccular stimulation and oculomotor reactions. Laryngoscope, 1970b, 80, 1713–1721.Google Scholar
  44. Fredrickson, J. M. Vestibular nerve projection to association fields of the cerebral cortex in the monkey. In J. Stahle (ed.), Vestibular Function on Earth and in Space. Pergamon Press, Oxford, 1970.Google Scholar
  45. Fredrickson, J. M., and Schwarz, D. Multisensory influence upon single units in the vestibular nucleus. In Fourth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA SP-187, 1970.Google Scholar
  46. Fredrickson, J. M., Schwarz, D., and Kornhuber, H. H. Convergence and interaction of vestibular and deep somatic afferents upon neurons in vestibular nuclei of the cat. Acta Otolaryngol (Stockholm), 1966a, 61, 168–188.Google Scholar
  47. Frederickson, J., Figge, U., Scheid, P., and Kornhuber, H. H. Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp. Brain Res., 1966b, 2, 318–327.Google Scholar
  48. Gacek, R. The course and central termination of first order neurons supplying vestibular endorgans in the cat. Acta Otolaryngol (Stockholm) Suppl, 1969, 254, 5–64.Google Scholar
  49. Gacek, R. R. Anatomical studies of the vestibulo-ocular pathways in the cat. Adv. Oto-Rhino-Laryngol, 1973, 19, 66–75.Google Scholar
  50. Gacek, R. R., and Lyon, M. Localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol (Stockholm), 1974, 77, 92–101.Google Scholar
  51. Gilson, R. D., Stockwell, C. W., and Guedry, F. E. Nystagmus responses during triangular waveforms of angular velocity about the y- and z-axes. Acta Otolaryngol (Stockholm), 1973, 75, 21–26.Google Scholar
  52. Goldberg, J. M., and Fernandez, C. Vestibular mechanisms. Ann. Rev. Physiol 1975a, 37, 129–162.Google Scholar
  53. Goldberg, J. M., and Fernandez, C. Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol (Stockholm), 1975b, 80, 101–110.Google Scholar
  54. Goldberg, J. M., and Fernandez, C. Conduction times and background discharge of vestibular afferents. Brain Res., 1977, 122, 545–550.Google Scholar
  55. Grillner, S., Hongo, T., and Lung, S. The vestibulospinal tract: Effects on alpha-motoneurones in the lumbosacral spinal cord in the cat. Exp. Brain Res., 1970, 10, 94.Google Scholar
  56. Groen, J. J. The semicircular canal system of the organs of equilibrium. II Phys. Med. Biol, 1957, 1(3), 225–242.Google Scholar
  57. Grusser, O. J., and Grusser-Cornehls, U. Interaction of vestibular and visual inputs in the visual system. Prog. Brain Res., 1972, 37, 573–583.Google Scholar
  58. Guedry, F. E., Jr. Psychophysiological studies of vestibular function. In W. D. Neff (ed.), Contributions to Sensory Physiology. Academic Press, New York, 1965, pp. 63–135.Google Scholar
  59. Guedry, F. E., Jr. Psychophysics of vestibular sensation. In H. H. Kornhuber (ed.), Handbook of Sensory Physilogy, Vol. I/2, Springer-Verlag, Berlin, 1974, pp. 3–154.Google Scholar
  60. Hardy, M. Observations on the innervation of the macula sacculi in man. Anat. Rec., 1934, 59, 403–418.Google Scholar
  61. Highstein, S. M. The organization of the vestibulo-oculomotor and trochlear reflex pathways in rabbit. Exp. Brain Res., 1973, 17, 285–300.Google Scholar
  62. Highstein, S. M., and Ito, M. Differential localization within the vestibular nuclear complex of the inhibitory and excitatory cells innervating 3rd nucleus oculomotor neurons in rabbit. Brain Res., 1971, 29, 358–362.Google Scholar
  63. Highstein, S. M., Ito, M., and Tsuchiga, T. Synaptic linkage in the vestibulo-ocular reflex pathway of rabbit. Exp. Brain Res., 1971, 13, 306–326.Google Scholar
  64. Hixson, W. C. Frequency response of the oculovestibular system during yaw oscillation. NAMRL 1212. Naval Aerospace Medical Research Laboratory, Pensacola, Fla., 1974.Google Scholar
  65. Hixson, W. C., Niven, J. I., and Correia, M.J. Kinematics nomenclature for physiological accelerations with special reference to vestibular applications. Naval Aerospace Medical Institute, Pensacola, Fla., NASA Monograph 14. 1966.Google Scholar
  66. Igarashi, M. Dimensional study of the vestibular end organ apparatus. In The Role of the Vestibular Organs in Space Exploration. NASA SP-115, 1966, pp. 47–54.Google Scholar
  67. Ito, M. The cerebello-vestibular interaction in the cat’s vestibular nuclei neurons. In Fourth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA SP-187, 1970, 183–199.Google Scholar
  68. Ito, M., and Yoshida, M. The origin of cerebellar-induced inhibition of Deiter’s neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp. Brain Res., 1966, 2, 330–349.Google Scholar
  69. Ito, M., Kawai, N., and Udo, M. The origin of cerebellar-induced inhibition of Deiter’s neurones. III. Localization of the inhibitory zone. Exp. Brain Res., 1968, 4, 310–320.Google Scholar
  70. Ito, M., Udo, M., Mano, N., Kawai, N. Synaptic action of the fastigiobulbar impulses upon neurones in the medullary reticular formation and vestibular nuclei. Exp. Brain Res., 1970, 11, 29–47.Google Scholar
  71. Ito, M., Nisimaru, N., and Yamamoto, M. Specific neural connections for the cerebellar control of vestibulo-ocular reflexes. Brain Res., 1973, 60, 238–243.Google Scholar
  72. Johnsson, L. G., and Hawkins, J. E., Jr. Otolithic membranes of the saccule and utricle in man. Science, 1967, 157, 1454–1456.Google Scholar
  73. Kornhuber, H. H. Motor functions of cerebellum and basal ganglia: The cerebello-cortical saccadic (ballistic) clock, the cerebello-nuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik, 1971, 8, 157–162.Google Scholar
  74. Ladpli, R., and Brodal, A. Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res., 1968, 8, 65–96.Google Scholar
  75. Landolt, J. P., Correia, M. J., Young, E. R., Cardin, R. P. S., and Sweet, R. C. A scanning electron microscopic study of the morphology and geometry of neural surfaces and structures associated with the vestibular apparatus of the pigeon. J. Comp. Neurol, 1975, 159, 257–287.Google Scholar
  76. Lindeman, H. H. Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb. Anat. Entwicklungsgesch, 1969, 40(1), 1–110.Google Scholar
  77. Loe, P. R., Tomko, D. L., and Werner, G. The neural signal of angular head position in primary afferent vestibular nerve axons. J. Physiol. (London), 1973, 230, 29–50.Google Scholar
  78. Lorente de No, R. Anatomy of the eighth nerve. I. The central projection of the nerve endings of the internal ear. Laryngoscope, 1933, 43, 1–38.Google Scholar
  79. Lowenstein, O. The effect of galvanic polarization on the impulse discharge from sense endings in the isolated labyrinth of the thornback ray (Raja clavata). J. Physiol. (London), 1955, 127, 104–117.Google Scholar
  80. Lowenstein, O., and Sand, A. The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J. Physiol. (London), 1940, 99, 89–101.Google Scholar
  81. Lowenstein, O., and Wersäll, J. A functional interpretation of the electron microscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature, 1959, 184, 1807–1810.Google Scholar
  82. Lund, S., and Pompeiano, O. Descending pathways with monosynaptic action on motoneurones. Experientia, 1965, 21, 602–603.Google Scholar
  83. Lund, S., and Pompeiano, O. Monosynaptic excitation of alpha motoneurones from supraspinal structures in the cat. Acta Physiol. Scand., 1968, 73, 1–21.Google Scholar
  84. Maeda, M., Maunz, R. A., and Wilson, V. J. Labyrinthine influence on cat forelimb motoneurons. Exp. Brain Res., 1975, 22, 69–86.Google Scholar
  85. Maekawa, K., and Simpson, J. I. Climbing fiber responses evoked in vestibulo-cerebellum of rabbit from visual system. J. Neurophysiol, 1973, 36, 649–666.Google Scholar
  86. Markham, C. H. Midbrain and contralateral labyrinth influences on brainstem vestibular neurons in the cat. Brain Res., 1968, 9, 312–333.Google Scholar
  87. Markham, C. H. Descending control of the vestibular nuclei: Physiology. Prog. Brain Res., 1972, 37, 589–600.Google Scholar
  88. Markham, C. H., Precht, W., and Shimazu, H. Effect of stimulation of interstitial nucleus of Cajal on vestibular unit activity in the cat. J. Neurophysiol, 1966, 29, 493–507.Google Scholar
  89. McCabe, B. F., Ryu, J. H., and Sekitani, T. Further experiments on vestibular compensation. Laryngoscope, 1972, 82, 381–396.Google Scholar
  90. McMaster, R., Weiss, A., and Carpenter, M. Vestibular projections from the nuclei of the extraocular muscles: Degeneration resulting from discrete partial lesions of the vestibular nuclei in the monkey. Am. J. Anat., 1966, 118, 163–194.Google Scholar
  91. McNally, W. J., and Stuart, E. A. Physiology of the Labyrinth. American Academy of Ophthalmology and Otolaryngology, Rochester, N.Y., 1967.Google Scholar
  92. Melvill Jones, G. Transfer function of labyrinthine volleys through the vestibular nuclei. Prog. Brain Res., 1972, 37, 139–156.Google Scholar
  93. Melvill Jones, G. Is there a vestibulo-spinal reflex contribution to running? Adv. Oto-Rhino-Laryngol, 1973, 19, 128–133.Google Scholar
  94. Melvill Jones, G., and Milsum, J. H. Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats. J. Physiol. (London), 1970, 209, 295–316.Google Scholar
  95. Melvill Jones, G., and Milsum, J. H. Frequency response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J. Physiol. (London), 1971, 219, 191–215.Google Scholar
  96. Melvill Jones, G., and Spells, K. E. A theoretical and comparative study of the functional dependence of I the semicircular canal upon its physical dimensions. Proc. Roy. Soc. London Ser. B, 1963, 157, 403–419.Google Scholar
  97. Mickle, W. A., and Ades, H. W. A composite sensory projection area in the cerebral cortex of the cat. Am. J. Physiol., 1952, 170, 682–689.Google Scholar
  98. Mickle, W. A., and Ades, H. Rostral projection pathway of the vestibular system. Am. J. Physiol., 1954, 176, 243–246.Google Scholar
  99. Miller, E. F. Counter-rolling of the human eyes produced by head tilt with respect to gravity. Acta Otolaryngol (Stockholm), 1962, 54, 479–501.Google Scholar
  100. Money, K. E., and Correia, M. J. The vestibular system of the owl. Comp. Biochem. Physiol., 1972, 42A, 353–358.Google Scholar
  101. Money, K. E., and Scott, J. W. Functions of the separate sensory receptors of nonauditory labyrinth in the cat. Am. J. Physiol., 1962, 202, 1211–1220.Google Scholar
  102. Money, K. E., Bönen, L., Beatty, J., Kuehn, L., Sokoloff, M., and Weaver, R. Physical properties of fluids and structures of vestibular apparatus of the pigeon. Am. J. Physiol., 1971, 220, 140–147.Google Scholar
  103. Nashner, L. M. Vestibular postural control model. Kybernetik, 1972, 10, 106–110.Google Scholar
  104. Niven, J. I., Hixson, W. C., and Correia, M. J. Elicitation of horizontal nystagmus by periodic linear acceleration. Acta Otolaryngol (Stockholm), 1966, 62, 429–441.Google Scholar
  105. Nyberg-Hansen, R. Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus: An experimental study with silver impregnation methods in the cat. J. Comp. Neurol, 1964, 122, 355–367.Google Scholar
  106. Nyberg-Hansen, R. Functional organization of descending supraspinal fibre systems to the spinal cord: Anatomical observations and physiological correlations. Ergeb. Anat. Entwicklungsgesch., 1966, 39(2).Google Scholar
  107. Odkvist, L. M., Rubin, A. M., Schwarz, D. W. F., and Fredrickson, J. M. Vestibular and auditory cortical projection in the guinea pig (Cavia porcellus). Exp. Brain Res., 1973a, 18, 279–286.Google Scholar
  108. Odkvist, L. M., Rubin, A. M., Schwarz, D. W. F., and Fredrickson, J. M. Vestibular cortical projection in the rabbit. J. Comp. Neurol, 1973b, 149, 117–120.Google Scholar
  109. O’Leary, D. P., and Honrubia, V. Analysis of afferent responses from isolated semicircular canal of the guitarfish using rotational acceleration white-noise inputs. II. Estimation of linear system parameters and gain and phase spectra. J. Neurophysiol, 1976, 39, 645–659.Google Scholar
  110. Oman, C. M., and Young, L. R. Physiological range of pressure difference and cupula deflections in the human semicircular canal: Theoretical considerations. Acta Otolaryngol (Stockholm,) 1972, 74, 324–331.Google Scholar
  111. Outerbridge, J. S. Experimental and theoretical investigation of vestibularly-driven head and eye movement. Thesis, Department of Physiology, McGill University, Montreal, Canada, July 1969.Google Scholar
  112. Penfield, W. Vestibular sensation and the cerebral cortex. Ann. Oto-Rhino-Laryngol. (Paris), 1957, 66, 691–698.Google Scholar
  113. Pompeiano, O. Vestibulo-spinal relations: Vestibular influences on gamma motoneurons and primary afferents. Prog. Brain Res., 1972, 37, 197–232.Google Scholar
  114. Pompeiano, O., and Brodal, A. Spinovestibular fibers in the cat: An experimental study. J. Comp. Neurol, 1957, 108, 353–382.Google Scholar
  115. Precht, W. The physiology of the vestibular nudei. In H. H. Kornhuber (ed.), Handbook of Sensory Physiology, Vol. I/l. Springer-Verlag, New York, 1974.Google Scholar
  116. Rauch, S., and Koestlin, A. Aspects chimiques de l’endolymphe et de la périlymphe. Pract. Oto-Rhino-Laryngol. (Basel), 1958, 20, 287.Google Scholar
  117. Roberts, T. D. M. Neurophysiology of Postural Mechanisms. Butterworths, London, 1967.Google Scholar
  118. Roberts, T. D. M. Labyrinthine control of the postural muscles. In Third Symposium on the Role of the Vestibular Organs in Space Exploration. NASA SP-152, 1968, pp. 149–168.Google Scholar
  119. Robinson, D. A. The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Res., 1974, 71, 195–207.Google Scholar
  120. Rosenhall, U. Vestibular macular mapping in man. Ann. Otol., 1972a, 81, 339.Google Scholar
  121. Rosenhall, U. Mapping of the cristae ampuUares in man. Ann. Otol., 1972b, 81, 882.Google Scholar
  122. Sans, A., Raymond, J., and Marty, R. Résponses thalamiques et corticales à la stimulation électrique du nerf vestibulaire chez le chat. Exp. Brain Res., 1970, 10, 265–275.Google Scholar
  123. Sasaki, K. Electrophysiological studies on oculomotor neurons of the cat. Jap. J. Physiol, 1963, 13, 287–302.Google Scholar
  124. Scheibel, A., Markham, C., and Koegler, R. Neural correlates of the vestibulo-ocular reflex. Neurology (Minneapolis), 1961, 11, 1055–1065.Google Scholar
  125. Schwarz, D. W. F., and Fredrickson, J. M. The vestibular cortex: A bimodal primary projection field. Science, 1971, 172, 280–281.Google Scholar
  126. Shimazu, H. Vestibulo-oculomotor relations: Dynamic responses. Prog. Brain Res., 1972, 57, 493–506.Google Scholar
  127. Shinoda, Y., and Yoshida, K. Neural pathways from the vestibular labyrinths to the flocculus in the cat. Exp. Brain Res., 1975, 22, 97–111.Google Scholar
  128. Skavenski, A. A., and Robinson, D. A. Role of abducens neurons in vestibulo-ocular reflex, J. Neurophysiol, 1973, 36, 724–738.Google Scholar
  129. Smith, C. A., and Rasmussen, G. L. Nerve endings in the maculae and cristae of the chinchilla vestibule, with special reference to the efferents. In Third Symposium on the Role of the Vestibular Organs in Space Exploration. NASA SP-152, 1968, pp. 183–200.Google Scholar
  130. Smith, C. A., Lowry, O. H., and Wu, M. L. The electrolytes of the labyrinthine fluids. Laryngoscope, 1954, 64, 141.Google Scholar
  131. Stein, B. M., and Carpenter, M. B. Central projections of portions of the vestibular ganglia innervating specific parts of the labyrinth in the rhesus monkey. Am. J. Anat., 1967, 120, 281–318.Google Scholar
  132. Steinhausen, W. Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts. Arch. Ges. Physiol, 1933, 232, 500–512.Google Scholar
  133. Suzuki, J. I., and Cohen, B. Head, eye, body and limb movements from semicircular canal nerves. Exp. Neurol., 1964, 10, 393.Google Scholar
  134. Suzuki, J. I., Cohen, B., and Bender, M. B. Compensatory eye movements induced by vertical canal stimulation. Exp. Neurol., 1964, 9, 137–160.Google Scholar
  135. Suzuki, J. L, Goto, K., Tikumasu, K., and Cohen, B. Implantation of electrodes near individual vestibular nerve branches in mammals. Ann. Oto-Rhino-Laryngol (St. Louis), 1969a, 78, 815–826.Google Scholar
  136. Suzuki, J. I., Tokumasu, K., and Goto, K. Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol (Stockholm), 1969b, 68, 350–362.Google Scholar
  137. Szentagothai, J. The elementary vestibulo-ocular reflex arc. J. Neurophysiol, 1950, 13, 395–407.Google Scholar
  138. Tarlov, E. The rostral projections of the primate vestibular nuclei: An experimental study in macaque, baboon and champanzee. J. Comp. Neurol, 1969, 135, 27–56.Google Scholar
  139. Tarlov, E. Organization of vestibulo-oculomotor projections in the cat. Brain Res., 1970, 20, 159–179.Google Scholar
  140. Tarlov, E. Anatomy of the two vestibulo-oculomotor projection systems. Prog. Brain Res., 1972, 37, 471–491.Google Scholar
  141. Trincker, D. The transformation of mechanical stimulus into nervous excitation by the labyrinthine receptors. Symp. Soc. Exp. Biol, 1962, 16, 289–316.Google Scholar
  142. van Egmond, A. A. J., Groen, J. J., and Jonkees, L. B. W. The mechanics of the semicircular canals. J. Physiol (London), 1949, 110, 1–17.Google Scholar
  143. von Hoist, E. Die Arbeitsweise des Statolithenapparates bei Fischen. Z. Vergl Physiol., 1950, 32, 60–120.Google Scholar
  144. Walberg, F., and Jansen, J. Cerebellar corticovestibular fibers in the cat. Exp. Neurol., 1961, 3, 32–52.Google Scholar
  145. Walzl, E. M., and Mountcastle, V. B. Projection of vestibular nerve to cerebral cortex of the cat. Am. J. Physiol., 1949, 159, 595–603.Google Scholar
  146. Werner, C. F. Die Differenzierung der Maculae im Labyrinth insbesondre bei Saugetieren. Z. Anat. Entwicklungsgesck, 1933, 99, 696–709.Google Scholar
  147. Wersall, J. Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig: A light and electron microscopic investigation. Acta Otolaryngol. (Stockholm) Suppl., 1956, 126, 1–85.Google Scholar
  148. Willis, W. D., Jr., and Grossman, R. G. Medical Neurobiology. Mosby, St. Louis, 1973.Google Scholar
  149. Wilson, V.J. Physiological pathways through the vestibular nuclei. Int. Rev. Neurobiol., 1972, 15, 27–81.Google Scholar
  150. Wilson, V. J. The labyrinth, the brain, and posture. Am. Sci., 1975, 63, 325–332.Google Scholar
  151. Wilson, V. J., and Maeda, M. Connections between semicircular canals and neck motoneurons in the cat. J. Neurophysiol, 1974, 37, 346–357.Google Scholar
  152. Wilson, V. J., and Yoshida, M. Comparison of effects of stimulation of Deiter’s nucleus and medial longitudinal fasciculus on neck, forelimb and hindlimb motoneurons. J. Neurophysiol., 1969a, 32, 743.Google Scholar
  153. Wilson, V. J., and Yoshida, M. Monosynaptic inhibition of neck motoneurons by the medial vestibular nucleus. Exp. Brain Res., 1969b, 9, 365–380.Google Scholar
  154. Wilson, V. J., Wylie, R. M., and Marco, L. A. Projection to the spinal cord from the medial and descending nuclei of the cat. Nature, 1967, 215, 429–430.Google Scholar
  155. Wilson, V. J., Gacek, R. R., Maeda, M., and Uchino, Y. Saccular and utricular input to cat neck motoneurons. J. Neurophysiol, 1977, 40, 63–73.Google Scholar
  156. Young, E. R., Correia, M. J., and Landolt, J. P. The marginal fiber mass in the utricle of the pigeon. Brain Res., 1974, 81, 533–542.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Manning J. Correia
    • 1
  • Fred E. GuedryJr.
    • 2
  1. 1.Departments of Otolaryngology, Physiology, and BiophysicsUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Naval Aerospace Medical Research LaboratoryNaval Air StationPensacolaUSA

Personalised recommendations